Guide to creating Sinhala and Tamil Unicode fonts
Preface

The Information and Communication Technology Agency of Sri Lanka (ICTA) has identified the enabling of ICT in local languages, Sinhala and Tamil, as a priority area in the e-Sri Lanka initiative. ICTA is promoting the use of ICT in Sinhala and Tamil, and is addressing issues relating to enabling ICT in local languages such as the relevant standards with regard to encoding, keyboard layouts, collation sequences and also the availability of standards based (Unicode compliant) fonts.

With the advent of word processing and desktop publishing there was an increase in the development of English fonts. Now there is a wide choice with regard to standards based fonts in English. But this is not so for Unicode compliant Sinhala fonts. Therefore ICTA has been promoting the development of Unicode compliant local language fonts. Several Unicode fonts such as MalithWeb, Dinamina were developed. Subsequently ICTA ensured the development of the Unicode Sinhala font Bhashitha and the Unicode Tamil font Sri Tamil. The font rules of these two fonts are given free to font developers.

But one of the impediments encountered in getting the fonts developed was that there was a dearth of proficient font developers, and it was necessary to get developers to develop Unicode compliant fonts. There was a necessity to develop awareness among font developers on how to create good quality standards based fonts. The necessity to develop awareness encompassed both the technical area covering font rules, and also designing.

In view of this ICTA, in partnership with the University of Colombo School of Computing (UCSC) implemented a training program with the objective of providing font developers with the knowledge and expertise on how to develop standards based, aesthetically correct local language fonts of good quality, in order to upgrade the general level of skill and knowledge in this area.

The training was conducted at the UCSC and was in the form of interactive workshops. An eminent panel of resource persons conducted the training. Participants were required to give a commitment that they would develop a portfolio of at least two glyphs.

Those who followed the training program are now able to develop Sinhala fonts. Several stylized Sinhala fonts have been developed by the trainees, and the proceedings of the training have been compiled into this book. This book fills a lacuna which has been felt in the font industry. It is expected that local language font developers will find this useful.

Reshan Dewapura,
Chief Executive Officer
Information and Communication Technology Agency of Sri Lanka (ICTA)

November 2010.
Resource team

Prof Gihan Dias
Dr. Ruvan Weerasinghe
Mr. Harsha Wijayawardhana
Prof. Rohini Paranavithana
Ms. Dinesha Ediriweera
Mr. G. Balachandran
Mr. Winnie Hettigoda
Mr. Sinnathambi Shanmugarajah
Mr. Chamara Dissanayake
Table of Contents

Introduction

Chapter One –
What is Unicode?

Chapter Two–
The Development of the Sinhala Script and the Characteristics of the Letters

Chapter Three–
Tamil Script

Chapter Four–
Unicode Encoding of Sinhala

Chapter Five–
Introduction to Fonts

Chapter Six–
Font Design

Chapter Seven
Font Design
Introduction

Sinhala was encoded in Unicode in the latter part of 1990s. The encoding process was initially spearheaded by the Council for Information Technology (CINTEC), by Prof. V.K. Samaranayake, Chairman of CINTEC and the founder director of University of Colombo School of Computing (UCSC), Prof. J. B. Disanayaka, who was Sri Lanka’s Ambassador to Thailand and Professor emeritus of Sinhala, University of Colombo, and also Mr. Nandadsara of UCSC. Although the encoding was carried out in the 1990s, it took another seven years for a proper implementation of Sinhala Unicode to take place.

The Information and Communication Technology Agency of Sri Lanka (ICTA) operational from July 2003, realized the importance of the local language initiative and agreed that this area should be taken over, given priority and promoted.

The objective was to ensure that the benefits of ICT should be taken to the population in Sri Lanka most of whom, if given a choice, would prefer to use ICT in Sinhala or Tamil. Hence the Local Language Working group the members of which had with expertise and experience in this area was established.

Thereafter, joint research was carried out into Sinhala Unicode by UCSC and the Department of Computer Science and Engineering of the University of Moratuwa, under the aegis of ICTA. The input method for Sinhala Unicode was standardized in 2004 by the Sri Lanka Standards Institution (SLSI) as the Sri Lanka Standard Sinhala Character Code for Information Interchange SLS 1134 : 2004. The main author of this standardization document was Prof. Gihan Dias and the other two main researchers during this phase of the Sinhala Unicode implementation were Dr. Ruvan Weerasinghe and Mr. Harsha Wijayawardhana, both from UCSC.

With the release of Uniscribe (Shaping engine) of Microsoft in 2003-5, Microsoft introduced Iskoolapotha. ICTA’s Local Language Initiative, under the direction of Prof. Gihan Dias spearheaded the development of Unicode compliant Sinhala fonts. ICTA held several awareness sessions on Unicode for Font Developers. During this period, Mr. Anura Tissera formerly of the Associated Newspapers of Sri Lanka (Lake House) created the “Dinamina” font. The development of several other fonts followed: Prof. Gihan Dias, Mr. Harsha Wijayawardhana, and the Linux User Group released Malithi, Sarasavi (Unicode) and LKLUG font respectively. All these fonts were results of research carried out into Unicode font creation in Sinhala and Tamil.

Mr. Sinnathambi Shanmugarajah thereafter developed a Sinhala “kit” incorporating standard Sinhala fonts, keyboard driver and installation instructions, which was made available free of charge on the site www.fonts.lk.

With the wider use of Sinhala and Tamil Unicode, the dearth of Sinhala and Tamil Unicode fonts had been identified as a major issue and as an obstacle for popularization of Sinhala and Tamil Unicode content. In order to remedy the above, ICTA initiated several projects.
Thereafter ICTA ensured the development of the Unicode Sinhala font Bhashitha. The objectives were to make available freely correct Sinhala SLS 1134: 2004 compliant font rules, to generate accurate Sinhala documents with the use of full complement of characters facilitated in the standard SLS 1134: 2004, to discourage the use of legacy Fonts that are not SLS 1134: 2004 compliant and to enable Old Sinhala / Pali (written in Sinhala script) books and content to be published on the Internet for worldwide audiences. Ms. Dineesha Ediriweera and Mr. E.D. Pemasiri developed the font rules and the font glyphs respectively for the Bhashitha font.

This training program was held to train font developers, on developing Unicode compliant, aesthetically correct fonts of good quality. Several Unicode Sinhala fonts have been developed as a result of the training – Puskola Potha, NYH, Warna, and SS-Sulakna, Winnie, Winnie1 designed by Ms. Nirmali Allahendra, Mr. Nirmala Handapangoda, Mr. Warna Somaratne, Mr. Sushiksitha Sasirichandra and Mr. Winnie Hettigoda.

For this training program held at the UCSC, most of the pioneers in Sri Lanka’s Unicode research in Sinhala and Tamil came together and it was coordinated at ICTA by Ms. Aruni Goonetilleke, program manager of ICTA.
Chapter One

WHAT IS UNICODE?

Dr. Ruvan Weerasinghe, University of Colombo School of Computing

Computers store data as 1 and 0 and a decimal number expressed in 1 and 0 is known as a binary number. Characters are also stored as binary numbers in computers. The Latin script was the original script which was used in handling data in computers and subsequently the need for storing data in other languages became one of the major researches prior to the 1990s. Although the problem was solved in the pre-Unicode era by mapping numbers of English characters in a font to characters of another language (shapes of English characters were replaced by character shapes of another language), the need arose for storing data in different languages in a single document. When a document was prepared in two different languages, only one language could be viewed and the other appeared as garbage. Also in data transmission from one computer to another, it was essential to send the font which was used, with the document. Sorting of data was not possible since data was sorted according to English or any other Roman Script based language in the pre-Unicode era. By the early 1990s, Unicode was suggested as a possible solution to the above problems.

Figure 1.1 Representing Sinhala and English in ASCII

Figure 1.2 Conflicts of using non-Unicode Fonts
Unicode provides a unique number for every atomic character in different languages. This number is usually stored as two bytes inside the computer. The first byte of the two byte code of a character provides language identification and the second byte gives character identification in that language. Unicode is designed to work independent of platform and of the application program which uses Unicode font. At present, more than fifty unique scripts have been encoded in Unicode.

i. The Unicode consortium

The Unicode consortium is a non-profit organization based in California, USA to develop, extend and promote the use of the Unicode Standard in the world. The membership of the Unicode consortium includes countries, large corporations and organizations in the computer and information processing industry. The consortium is financially supported solely by membership fees at present.

ii. Sinhala Unicode

Computer literacy in Sri Lanka has overtaken English literacy and at present it is at 10%. It is now widely believed that the Computer literacy is at 20-25% in Sri Lanka. Localization had been a priority in Sri Lanka since the 1980s and Sinhala was encoded in Unicode in 1997 although the implementation of Sinhala Unicode was not initiated until 2003 in earnest. Sinhala, unlike English is categorized under complex scripts. Sinhala belongs also to Phonetical languages or sound based languages and all Indic languages are categorized under this category. Sinhala, like other Indic languages, can make a single glyph with a consonant and vowel modifier. A glyph, always in the English language has a single code point and represents a single character. Unlike English, Sinhala glyphs can either have a single code point or a number or many code points or numbers.

In order for Sinhala Unicode to function properly, it requires the following:

1. Sinhala Unicode font
2. Shaping Engine such as Uniscribe for MS Windows, Pango Linux etc.
3. Sinhala Unicode Keyboard driver for input and this is not necessarily required for Unicode text rendering.

<table>
<thead>
<tr>
<th>Language</th>
<th>Code Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamil</td>
<td>2944-3071</td>
</tr>
<tr>
<td>Telugu</td>
<td>3072-3199</td>
</tr>
<tr>
<td>Kannada</td>
<td>3200-3327</td>
</tr>
<tr>
<td>Malayalam</td>
<td>3328-3455</td>
</tr>
<tr>
<td>Sinhala</td>
<td>3456-3583</td>
</tr>
<tr>
<td>Thai</td>
<td>3584-3711</td>
</tr>
<tr>
<td>Lao</td>
<td>3712-3839</td>
</tr>
<tr>
<td>Tibetan</td>
<td>3840-4095</td>
</tr>
<tr>
<td>Myanmar</td>
<td>4096-4255</td>
</tr>
<tr>
<td>Georgian</td>
<td>4256-4351</td>
</tr>
<tr>
<td>Hangul Jamo</td>
<td>4352-4607</td>
</tr>
<tr>
<td>Ethiopic</td>
<td>4608-4991</td>
</tr>
<tr>
<td>Ethiopic Supplement</td>
<td>4992-5023</td>
</tr>
<tr>
<td>Cherokee</td>
<td>5024-5119</td>
</tr>
</tbody>
</table>

Figure 2.3 Sinhala Unicode Range

Some Applications which use Sinhala Unicode fonts
Figure 2.4 Google in Sinhala

Figure 2.5 A Sinhala website
Chapter Two

THE DEVELOPMENT OF THE SINHALA SCRIPT
AND THE CHARACTERISTICS OF THE LETTERS

Professor Rohini Paranavitana
Department of Sinhala, University of Colombo.

Language is the basis of human communication and is an essential feature of human life and differentiates human beings from other living beings. Language thus interacts with every aspect of human life and enables one to exchange human thoughts with one another. As it is difficult to remember everything, which we have spoken, heard or thought, it is necessary to record them in writing, not only for the benefit of oneself but for the benefit of others in society and to transmit them further for future generations. Hence, writing paves way for communication with people far in place and time. An alphabet is a set of standardized visual symbols, used to record/write the sounds of a language. The sounds and their symbols thus produce a perfect language. Therefore, the relationship between speech and written symbols is similar to the relationship between a human and his photograph.

Fig 1:- Brahmi Script

Sinhala is the language spoken by the Sinhalese who constitute 75% of the island’s population. The earliest extant Sinhala writings belong to the 3rd century B.C. These writings are to be found in inscriptions in rock caves of Mihintale, situated 8 kilometers from the ancient city of Anuradhapura. The earliest inscription there refers to a king by the name of Uttiya, the younger brother of King Devanampiya Tissa, who reigned in Sri Lanka in the 3rd century, B.C. These are called Brahmi inscriptions, because they are written in the script known as Brahmi. With the introduction of Buddhism to the island in the 2nd century B.C. by Arhant Mahinda, who was the son of Emperor Asoka in India, the inhabitants in the island became devotees of the Buddhism.
The primary task of the laymen was to provide food, lodging and medicine to the Buddhist monks. The content of the most of these inscriptions are records of the donations made to the Buddhist monks by their devotees. The names of the donors have been inscribed on the drip ledges of the caves, and were not only the names of the royal family but were also names of people from all walks of life. The Buddhist monks lead a simple life and they preferred to take their shelter in the caves, which were prepared by the devotees to suit their austere life. The earliest written records existing in the island today cannot be assigned to a period earlier than the 3rd century B.C. Archaeologists have argued with evidence that this script was brought from India even before the arrival of Arhant Mahinda. It has been found, that the earliest examples of Brahmi writings extant in the island contain some peculiar features, which are not noticed in the inscriptions of Emperor Asoka of India, who had extensively used Brahmi script to inscribe his discourses.¹

The earlier inscriptions written briefly became longer and complicated with the development of the subject matter recorded in them such as regulations and administrative matters relating to the monasteries. As a result the Sri Lankan alphabet too began to invent its own features by the 4th century A.D. Over the ages, it accumulated new features and by the 8th century the long and short æ and nasal ng, nd, mb became evident in the Sinhala alphabet making them unique.² The vowel sound æ had a short and a long vowel pronunciation, short æ being similar to the sound emanated when pronouncing English at and the long æ being similar to English ant.

The Aryan settlers, who migrated to Sri Lanka from time to time from India, brought with them the knowledge and methods of writing, which were in use in their motherland at that time. At the time of the arrival of Arhant Mahinda, the language of the island had attained a developed state for expressing a philosophy of highly complex thought to be given to people by way of free expression. Had the language not been developed, it would have been impossible to write commentaries for explaining the tenets of Buddhism during the lifetime of Arhant Mahinda.

The Pali Tripitaka and its commentaries were translated into Sinhala, the language of the inhabitants of the island. It is these commentaries, which were later translated into Pali by Buddhaghosha Thera, who arrived in Sri Lanka from South India in search of the Buddhist doctrine in the 5th century CE.3

There are hundreds of inscriptions representing the development of the Sinhala script which belong to every half century of the Anuradhapura and Polonnaruwa periods. This unbroken series of epigraphic records indicates the evolution of the Sinhala Script. In the beginning, the subject matter and the number of letters used in the inscriptions were limited. In the evolution of the Sinhala Brahmi script in Sri Lanka several important stages have been mentioned. The first stage consists of the period from 3rd century BCE to the end of the 4th century CE. Subsequently at the second stage the letters began to take a slightly a circular shape. In the eighth century, it came under the influence of the South Indian Pallava Grantha script which influenced very much in taking the Sinhala script towards the modern form.4

Fig 3:- Pallava Sinhala akuru
Granthakshara(7-8 A.D.) (8 century A.D.)

The types of material used for writing also had a tremendous impact on the evolution of the script. In the beginning stone would have been the most popular material on which the inscriptions were engraved. Stone was replaced by palm leaves by the eighth century.

4 Fig. 3, Ven. Kothmale Amarawamsa, Sinhala Sellipi, M.D. Gunasena, 1969, Colombo.
5 Fernando, P.E.E., Pala graphical Development of the Brahmi Script in Ceylon from 3rd Century B.C. to 7th Century A.D., University of Ceylon review, Vol. vii, No. 4. October, p. 299.
The texture of this material helped very much to move the stylus to write letters in a more circular manner in order to avoid the leaf being damaged by angular strokes. Sinhala was in use for writing various subjects with the influence from Pali and Sanskrit languages. In Sri Lanka, the compilation of books witnesses their origins from very early times. It has been suggested by S. Paranavitana that writing on palm leaves commenced in the 8th century CE, but P. E. E. Fernando holds the view that the practice of using palm leaves as writing material was known in Sri Lanka even in the 5th century the latest.5

When writing on palm leaves became popular, the books transmitted orally came to be written down on palm leaves. Henceforth, every composition except epigraphic records was written on palm leaves. The use of palm leaf as the material of writing was a great impetus for the improvement of literature as well as for the spread of learning. The palm leaf manuscripts succumbed to various forces of destruction and the oldest manuscripts available today are believed to have belonged to 13th century CE (Dambadeniya period).6 One of the manuscripts, the Cullavagga, is deposited in the Colombo Museum Library and the other manuscript, the Visuddhimagga tika, is available at the Peradeniya University Library.

The majority of the manuscripts belong to the period of King Kirti Sri Rajasingha, who reigned in Kandy in the 18th century. As a result of the Buddhist and literary renaissance headed by venerable Weliwita Sri Saranankara thero, majority of the manuscripts, which were deposited in the temple libraries were copied and distributed among temples.

Printing of Sinhala books commenced in 1737 during the Dutch administration of the littoral of the island. A book on the grammar of the Sinhala language was published in Dutch by Johannes Ruell and was printed in Holland in 1707, even before the printing was introduced in the island. It contains examples from Sinhala language for various grammatical rules and those examples were printed in Sinhala characters.7 This can be presumed as the first time that Sinhala characters were printed in a book.

7 Ruell, Joannes, Grammatica of Singaleesche Taal-kunst, Amasterdam, 1707.
Fig 4: Cover Page of the *Grammatica of Singaleesche Taal-kunst* (J. Ruell)

Fig 5: Sinhala Characters 1707
It can be concluded that Sinhala printing was first introduced in Sri Lanka in 1737 during the time of the Dutch Governor, Gustaaf Willem Baron van Imhoff. Sinhala letters, which were being written on palm leaves thus moved on to being printed on paper. The first book published in Sri Lanka is a prayer book in Sinhala. It was known as the Lord’s Prayer. The proclamations of the Dutch Government called Plakaats were also printed in Sinhala, Tamil and Dutch, at the new press introduced by them. These Sinhala characters for printing were designed and cut on wood by a Dutch technician, Gabriel Schade. There, the printers have strictly followed the contemporary writing style extant on palm leaves without much of the standardized punctuations, separations of words, etc. The first printing press with Sinhala types had remained the only press for many years that followed. Several other printing presses were established by the Christian missionary societies during the early 19th century. Christian books, including the Sinhala. versions began to be published.

Buddhists too started their own printing presses and published newspapers and journals in which they printed extracts from classical Sinhala texts among other things. These printers took the initiative of publishing the texts as part of their religious and nationalist movements. As the palm leaf writers were not in the habit of using many punctuation marks and separation of words, the modern text editors faced the difficult task of changing their system of writing. The script of the palm leaf manuscripts had peculiarities in writings particularly in the conjunct consonants, double consonants with repha and aspirates, half nasals, etc. With the introduction of the printing press the letters became still more circular.
In the Sinhala alphabet, the letters take different shapes. A reader and the writer both have to differentiate one letter from the other by its particular shape. It is important to have a good knowledge of the shape of letters before starting to write. The letters are formed with the combination of several sub-components that are called subordinate parts of a letter, beginning with the main body followed by the strokes, the strokes that combine with the letter, the strokes that do not combine with the letter, height, straight lines, curves, space between letters, space between the letters, etc.

When writing a letter it has to start and end correctly. The letters are formed by combining several subordinate parts at the beginning. They are twofold. One is a dot attached to a line and the other is a line without a dot. These subordinate parts help to distinguish one letter from the other. The ending subordinate parts are also twofold viz. the endings of the letters \(\text{ෝ} \), \(\text{ශ} \) and \(\text{ෂ} \) curves drawn at the rear end. The ending subordinate parts of the letters \(\text{හ} \), \(\text{ළ} \) and \(\text{ෆ} \) curves to the left at the upper end. In letters \(\text{ඵ} \), \(\text{බ} \) and \(\text{භ} \) the ending part bends to the left with a small hook like thing at the end. The nasalized consonants \(\text{ඳ} \), \(\text{ඟ} \) and \(\text{ඬ} \) and the nasal consonant \(\text{ඤ්} \) special kind of a subordinate part joins at the end.

![Page of the Prayer Book of the bible. Printed in 1737](image-url)
Each and every letter has a specific height and according to the size of the letter they are classified into three, namely, medial letters, ascending letters and descending letters. The writing space should be divided into three phases horizontally. The letters written in the middle phase are medial letters. \(\text{ග, ව, ව, බ} \) are medial letters. The letters that spread up from the middle phase to the upper phase are called ascending letters. They are \(\text{ට, ද, ය, ඝ, ඒ} \). The letters that spread down to the lower phase are called descending letters, \(\text{අ, ව, ච} \).
The initial components of the medial letters are written in a small phase over the middle phase. The strokes that come after and before the consonants are written in the middle phase. The initial component of the letter ශ begins at the lowest point of the middle phase. The stroke which denote ස vowel is written below the middle phase in ශ, ස, ස and ස.

There are two kinds of ascending letters, namely, letters without a stroke at the top and the letters with a stroke at the top. The letters of the first category are little shorter than the second category.

The ක letter is formed combining of two letters, one medial letter and an ascending letter. The ක which represent cerebral හ and vowel sound ස is also an ascending letter. The descending letters are written in the middle phase and spreads to the lower phase.

Fig 10: Ascending letters

Fig 11: Descending letters

ඤ and ළ are written with the combination of a medial letter and descending letter. All the medial strokes which combine with the descending letters are written in the same way as they are written with the medial letters.

The strokes that are written as a combination with consonants to represent a vowel sound can be divided into three categories. The strokes are smaller than the letters. The medial strokes can be written in the same height as the medial letters ම, ඼, ල, ක, ල, ක. The strokes are written usually after the letters except the (ඹඹ) kombuwa. It comes before the letter. The yansaya (ඹඹ) that represents a consonant sound is also categorized as a medial stroke.

Traditionally the strokes that combine with the ක letter are written on the lower phase. It is more logical writing them on the middle phase. The ක letter with ක vowel sound is written with an ascending stroke.
Fig 12: The Strokes

The strokes *ispilla, udupilla and uspilla* represents vowel sounds. The cap stroke (*raehaena*) and flag stroke (*kodiya*) are written to denote that the vowel sound is not included in the consonant. The strokes which represents e vowel sound, *udupilla* and *raehena* are used with the ascending letters that ends at the left side of the upper phase. Those are g j n. The strokes *uspilla* and *kodiya* are written with the other letters of that category to express the same objective.

Fig 13: Ascending strokes
Fig 14: Descending strokes
The *ispilla* that combines with the *aelapilla* denotes the අ vowel sound as in අමා and අමාත letters. Though there is a slightest difference between *uspilla* and *udupilla* it should be clearly understood and written. The *aelapilla* is combined with අ as an ascending stroke but it combines with other letters as an medial stroke අේ.

The strokes that are written on the lower phase are descending strokes. Most of them denote the u vowel sound as in සෙ, අෙ, සෑ, අෑ. The *rakaaraansaya* which represents the consonant sound අ is also a descending stroke as in සෙ, සේ. There are two kinds of descending strokes. *Kon paapilla* and *vak paapilla*. *Kon paapilla* is the stroke that is written with the consonant ස, සෙ, සෑ; සෙ, සෑ. *Vak paapilla* combines with the medial letters, සෙ, සේ, සෑ, සො, සො. These descending strokes are not used to denote the අ letter combine with the ව vowel sound. As a special case the *aelapilla* is written with අ to denote that sound. These strokes that denote ව sound are not used with the cerebral අෙ either. The ascending letter අෙ is written to denote that sound. A long *aedapilla* is used to denote the long අේ sound. When the descending strokes are combine with අේ (da) letter the ending component of that letter will be deleted as in අේ, අේළ, අේළෙ, අේරු (da, du,dy, dra, dru).
Chapter Three

TAMIL SCRIPT

The Tamil language belongs to the Dravidian Family of languages. Tamil is one of the oldest languages in the Indian Subcontinent with a recorded history of two millennia. Tamil is the official language of the state of Tamil Nadu, India and is one of the twenty two scheduled languages of India. Tamil is spoken widely in India, Sri Lanka and is an official language in Sri Lanka and Singapore. The Tamil language was the first language to be declared as a classical language by the government of India in 2004. Tamil is spoken by sizable minority populations in Mauritius, West Indies and Malaysia and it is commonly spoken by many emigrant communities worldwide. Tamil literature has a long history of two thousand years and the earliest period of Tamil literature which was known as “Sangam” period began in 300BCE and ended in 300 CE. The earliest epigraphic evidence of Tamil goes back to 3rd century BCE and Tamil inscriptions from 1st BCE to 1 CE were found in Egypt and Thailand.

The closest relative to Tamil language is Malayalam and until ninth century, Malayalam remained as a dialect of Tamil and the complete separation of Malayalam from Tamil to a separate language was not completed until 13th-14th century. Tamil descended from Proto Dravidian which was spoken in 3rd millennium BCE. Scholars believe that Proto Dravidian was spoken in the southern region of India around Godavari river basin. It is believed that in 3rd century BCE, Proto Dravidian would have given rise to Proto Tamil. The attested history of Tamil categorized into three periods: Old Tamil (300 BCE – 700CE), Middle Tamil (700 – 1600), and Modern Tamil (1600 – Modern Present).

Tamil is written by using a script which known as Vetteluttu. Some of the earliest epigraphy of Tamil Scripts points that it had evolved from Southern Brahmi Script. Old inscriptions of Tamil found in the early period were short and were discovered in caves and on pottery. The longest text in old Tamil is known as Tollkappiyam, which was an early work of grammar and poetry, the oldest layer of this inscription may be going back to 1 BCE. A collection of literary work in Old Tamil had also survived which included two thousand poems and this collection is collectively known as Sangam Literature which could be dated back to 1st CE to 5th CE. Other literary works include Cilappatikaram and Manimekali. Especially Manimekalai is set in South India and in Jaffna Peninsula Sri Lanka. Subsequently Tamil script was influenced by Pallava Grantha. Grantha,’ book’ in Sanskrit was a script which was used for writing Sanskrit in the region where Dravidian was prevalent. Grantha had letters which represented sounds which were not in Tamil. The present look of the Tamil Script would have emerged in 8th Century CE and it remained static since then.

Tamil Script has 12 vowels and 18 consonants and a special character which is known as Aytam. The combinations of vowels and consonants make 216 combinations and this number is the smallest combinations, which is found in Indic Languages. Like other Indian Languages, all consonants carry an invisible Vowel ‘a’ and dead consonant or pure sound is produced by placing a visible virama which is known as a ‘Puli’.
Tamil alphabet

Vowels

There are twelve vowels in Tamil script.

(Source: http://www.omniglot.com)

Vowel diacritics

(Source: http://www.omniglot.com)
Consonants

There are eighteen standard consonants in Tamil Alphabet

<table>
<thead>
<tr>
<th>Tamil</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>க [k, g, x, y, h]</td>
<td>ட ட் [t, d, ð]</td>
</tr>
<tr>
<td>ரா [ɾ]</td>
<td>எனு [ŋ]</td>
</tr>
<tr>
<td>கே [ʃ, ɕ, ʃ, s]</td>
<td>ப் பொ [p, b, β]</td>
</tr>
<tr>
<td>எனு [n]</td>
<td>மே [m]</td>
</tr>
<tr>
<td>டெ [t, ɾ, ɾ]</td>
<td>யே [j]</td>
</tr>
<tr>
<td>நே [n]</td>
<td>ரே [c]</td>
</tr>
</tbody>
</table>

(Source: http://www.omniglot.com)

Others

There are some other consonants which are known as “grantha” letters and they are used to write consonants borrowed from Sanskrit, and also some words from English origin.

<table>
<thead>
<tr>
<th>Tamil</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>ஜூ [ʃ]</td>
<td></td>
</tr>
<tr>
<td>சூ [ɕ]</td>
<td></td>
</tr>
<tr>
<td>சே [s]</td>
<td></td>
</tr>
<tr>
<td>ஹே [h]</td>
<td></td>
</tr>
<tr>
<td>கீ [kʃ]</td>
<td></td>
</tr>
</tbody>
</table>

Grantha letters

(Source: http://www.omniglot.com)
Numerals

Tamil numerals rarely appear in modern text. Instead Arabic numerals are used today.

(Source: http://www.omniglot.com)

<table>
<thead>
<tr>
<th>புருங்கையம்</th>
<th>ஒரு</th>
<th>இரண்டு</th>
<th>மூன்று</th>
<th>நான்கு</th>
<th>ஐன்று</th>
<th>ஆண்டு</th>
</tr>
</thead>
<tbody>
<tr>
<td>ஆண்டம்</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>இல்லை</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>

This is a special character in which is classified in Tamil grammar as being neither a consonant nor a vowel.

இய்தம் = ஆண்டம் -

Symbols

There are some other symbols which are used for various purposes in Tamil.

(实事求是: http://www.omniglot.com)

Tamil Unicode

Tamil Unicode was originally derived from ISCII standard. The Unicode range for Tamil is \text{U+0B80–U+0BFF}.

Figure 1 Tamil Inscription (Anuradhapura)

Figure 2 Tamil inscription
Evolution of Tamil Fonts

<table>
<thead>
<tr>
<th>Century</th>
<th>கண்டகங்கள்</th>
<th>கண்டகங்கள்</th>
<th>கண்டகங்கள்</th>
<th>கண்டகங்கள்</th>
<th>கண்டகங்கள்</th>
<th>கண்டகங்கள்</th>
</tr>
</thead>
<tbody>
<tr>
<td>ஆ. ஆ. 8</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 9</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 10</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 11</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 12</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 13</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 14</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 15</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 16</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 17</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 18</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
<tr>
<td>ஆ. ஆ. 19</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
<td>கட்டம்</td>
</tr>
</tbody>
</table>
TABLE OF VOWELS, CONSONANTS
AND COMPOUND LETTERS

<table>
<thead>
<tr>
<th>எடுக்கும் செலவு</th>
<th>எடுக்கும் செலவு</th>
<th>எடுக்கும் செலவு</th>
<th>எடுக்கும் செலவு</th>
</tr>
</thead>
<tbody>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
<tr>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
<td>முக்கியமான செலவு</td>
</tr>
</tbody>
</table>
Chapter Four

UNICODE ENCODING OF SINHALA

Prof. Gihan Dias
University of Moratuwa

Introduction and background

The need to support Sinhala on computers was identified some time back. In 1980’s the main focus was on a hardware based solution. Later many Sinhala Fonts were developed.
Eg: DL-Anurada, DL-Lihini, DL-Manel aputa, kaputadotcom, MalithiWeb, madhura, Thibus29STru

<table>
<thead>
<tr>
<th>Sample</th>
<th>Font</th>
</tr>
</thead>
<tbody>
<tr>
<td>සිංහල</td>
<td>Akshar Unicode</td>
</tr>
<tr>
<td></td>
<td>(akshar.ttf)</td>
</tr>
<tr>
<td>කංගරඹ</td>
<td>Dinamina</td>
</tr>
<tr>
<td></td>
<td>(dina-b-3.ttf)</td>
</tr>
<tr>
<td>මීත්රා</td>
<td>Iskoola Pota</td>
</tr>
<tr>
<td></td>
<td>(iskpota.ttf)</td>
</tr>
<tr>
<td>සිංහල</td>
<td>Malithi Web</td>
</tr>
<tr>
<td></td>
<td>(FM-MalithiUW46.ttf)</td>
</tr>
</tbody>
</table>

When using a keyboard, different layouts were used:
- Phonetic keyboard: In this layout the characters represent the sounds of spoken language. e.g.: ‘k’ is used for ‘ක’
- Wijesekara Keyboard: This keyboard is based on the Sinhala typewriter keyboard
When using the above keyboards several issues were identified. There was a problem of representing some characters such as ඄ි, අ, ආි, ආර, ආරි, අද, අත, අද, එම.

To ensure that standards are followed regarding computing in Sinhala and Tamil, CINTEC established the Committee for Sinhala and Tamil in Computer technology in 1985. The Committee agreed on a unique Sinhala alphabet and an alphabetical order. At first the encoding was based on the ISCII (Indian Standard Code for Information Interchange) and later it was expanded to support Unicode. In 1997 it was adopted by Unicode with some minor modifications.

- SLS1134 : 2011 Sri Lanka Sinhala Character Code for Information Interchange

The current standard which provides coding of the set of Sinhala characters for use in ICT is the Sri Lanka Sinhala Character Code for Information Interchange SLS 1134 : 2011. This new version provides encoding for Sinhala numerals.

Sinhala Language and Alphabet

Sinhala Script

The Sinhala Language belongs to Indic family of languages. In the Sinhala script each letter may consist of a consonant and a vowel and so is called an “abugida”. Each syllable unit is an individual visual unit or glyph. Two glyphs can tie up and form conjunct consonants which are called “බැඳි අකුරු - Bandi akuru” in Sinhala. Sorting words which are written in different styles (Conjunct consonants as opposed to ordinary writing) should be done according to the sorting rules of the Sinhala language.
Sinhala Alphabet

Sinhala Alphabet consists of 59 based letters. It includes

- 16 vowels
- 41 consonants
- 2 semi-consonants

Sinhala vowels

අ ආ ඇ ඎ ඏ ඐ ඒ ඓ ඔ ඕ ඖ ඗ ඘ ඙ ක ඛ ග ඝ ඞ ඟ ච ඡ ජ ඣ ඤ ඥ ඦ ට ඨ ඩ ඪ ණ ක ඬ ද ද න ඲ ඳ ඵ බ ම ද
Semi-consonants

Modifiers

A base letter represents a consonant with a vowel.

When there is an Al-Lakuna (ං) the default vowel is removed. You can change the vowel with other modifiers and these modifiers can be on any side of the letter (above, below, left or right).
Sinhala Unicode Chart – Range (0D80/0DF)
Sinhala Unicode encoding

In Encoding each Sinhala letter, is represented by a sequence of one or more Unicode characters.

E.g.: ස, ෆ, ය

<table>
<thead>
<tr>
<th>Letter type</th>
<th>Description</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vowels</td>
<td>Each vowel is represented by one character in the range 0D85-0D96</td>
<td>ජ = 0D85, ඣ = 0D86, ඤ = 0D8D</td>
</tr>
<tr>
<td></td>
<td>A vowel such as ජ should not be represented as a character sequence such as 0D85 0DCF</td>
<td></td>
</tr>
<tr>
<td>Consonants</td>
<td>Each consonant is represented by one character in the range 0D9A – 0DC9</td>
<td>ෙ = 0D9A, ේ = 0DA4</td>
</tr>
<tr>
<td>Pure Consonants</td>
<td>A pure consonant (i.e., without an implicit vowel) is represented by a two character sequence “cons 0DCA” (cons + ං) where cons represents a consonant</td>
<td>ෞ = 0D9A 0DCA, ෸ = 0DA7 0DCA</td>
</tr>
<tr>
<td>Consonants with vowel signs</td>
<td>A consonant with a vowel sign is represented by a two character sequence “cons + vs” where vs represents a vowel sign.</td>
<td>ෟ = 0D9A 0DCF, ෠ =0D9A 0DDE, ෡ =0D9A 0DDB</td>
</tr>
<tr>
<td>෢, ෣, ෤, ෥, ෦</td>
<td>These are non standard letters and encoded accordingly</td>
<td>෢ = 0DBB 0DD0 ෣ = 0DBB 0DD1 ෤ = 0DBB 0DD4 ෥ = 0DDB 0DD6 ෦ = 0DC5 0DD4 ෧ = 0DC5 0DD6</td>
</tr>
<tr>
<td>Semi-consonant signs anusvaraya (∞) or visargaya (/bind)</td>
<td>These signs may follow a vowel, a consonant or a vowel sign. If there is a semi consonant it is always the last character in a combining character sequence</td>
<td>෢ = 0D85 0D82 (ජ + ජ = 0D85 0D83 (ජ + ජ) ෠ = 0D9A 0D82 (ච + ∞) ෡ජ = 0D9A 0DDD 0D82 (චජ + ∞), ෢ජ = 0D9A 0DD4 0D83 (ජ + ∞)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| (yansaya) | Yansaya is a consonant modifier which represent “ya” which follows a pure consonant | \(\text{ංස} + \text{zwj} + \text{ං} : \text{ඔ} \)
| | | 0DCA 200D 0DBA(yansaya) |
| | | \(\text{ඔ} = 0DAD 0DCA 200D 0DBA \) |
| (Rakaransaya) | Rakaransaya is a consonant modifier which represent a “ra” which follows a pure consonant | \(\text{ඔ} = 0D9A 0DCA 200D 0DBB \) \(\text{ඔ} + \text{ඔ} + \text{zwj} + \text{ඔ} \)
| | | \(\text{ඔ} = 0D9A 0DCA 200D 0DBB 0DD9 \) \(\text{ඔ} + \text{ඔ} + \text{zwj} + \text{ඔ} + \text{ඔ} \) |
| Repaya | The repaya represents the letter අ preceding a consonant | \(\text{ඔ} = 0D9A 0DBB 0DCA 200D 0DB8(\text{ඔ} + \text{ඔ} + \text{zwj} + \text{ඔ}) \) |
| Conjunct letters | Conjunct letters are represented as (cons + අ + zwj + cons) | \(\text{ඔ} = 0DB1 0DCA 200D 0DAF \) \(\text{ඔ} + \text{ඔ} + \text{zwj} + \text{ඔ} \)
| | where second consonant may optionally be followed by a vowel sign | \(\text{ඔ} = 0D9A 0DCA 200D 0DC2 0DDA \) \(\text{ඔ} + \text{ඔ} + \text{zwj} + \text{ඔ} + \text{ඔ} \)
| | | \(\text{ඔ} = 0DB1 0DCA 200D 0DAF 0DCA 200D 0DBB 0DCF \) \(\text{ඔ} + \text{ඔ} + \text{zwj} + \text{ඔ} + \text{ඔ} + \text{ඔ} + \text{ඔ} \)
| | Conjoint letters may be further joined by a rakaransaya or | |
| | yansaya | |
| Touching letters | A pure consonant written touching the following letter instead of using an al-lakuna used in classical and Buddhist | \(\text{ඔ} = 0DC3 200D 0DCA 0DC3 \) \(\text{ඔ} + \text{zwj} + \text{ඔ} + \text{ඔ} \)

Zwj (Zero-width Joiner) - ZWJ joins two or more consonants to form a single unit (conjunct consonants) and it can also alter shape of preceding consonants (cursive ness of the consonant). This has the value 200D.

ZWNJ (Zero-width non joiner) - This can be used to disjoin a single ligature into two or more units. This has the value 200C
The Sinhala Collation Sequence

This refers to the order in which Sinhala character strings should be placed when sorting them
Font levels

Sinhala fonts are standardized in to three different levels. Level 1 font provides basic Sinhala support whereas higher level fonts have more advanced features.

<table>
<thead>
<tr>
<th>Level 1 fonts</th>
<th>Level 2 fonts</th>
<th>Level 3 fonts</th>
</tr>
</thead>
<tbody>
<tr>
<td>These fonts commonly used vowels, consonants and consonants with modifiers and they are intended to be used in mobile devices. This level supports special characters such as yansaya, rakaransaya and repaya and “ක්ෂ”</td>
<td>These fonts shall have all the features of level one font and additionally support existing combination of Sinhala consonants with repaya. These fonts are intended for general applications such as documents and books.</td>
<td>These fonts support special characters such as න and ධ and also support all combinations of strokes with conjuncts including “repaya+ispilla” combinations. Touching letters are also supported. These are intended for advanced publications and printing applications which supports pali and Sanskrit scripts and historic documents.</td>
</tr>
</tbody>
</table>
Chapter Five

INTRODUCTION TO FONTS

by Harsha Wijayawardhana,
Theekshana

1. Introduction

In typography, a font is regarded as a set of characters (it is usually a whole of Alphabet) of a single size and style of a particular typeface. A typeface can include one or many fonts with a single style or stylistic unity, but can vary in sizes with a coordinated set of glyphs which represent characters, symbols punctuation, and numerals. The word ‘glyph’ plays a major role in a font and a typeface where a glyph can be defined as an element of writing and is a vague term in typography especially in multi lingual fonts. In Indic scripts, a set of conjunct characters or letters (conjunction of atomic characters) can make a single glyph. Prior to the advent of desktop publishing, a font and a typeface had very distinct meanings. In those days, a font was a member of a family of fonts whereas a typeface was a family of fonts with a similar visual appearance with specific sizes. An example, a member of 6 point Roman Sans Serif bold or italic is a font and a Roman Sans Serif is a typeface. The size of a font is measured in points and in the pre computer age, a particular point size was a different font, the distinction of which, in the era of computer desktop publishing where size is easily scalable in outline-fonts, has become obsolete. In other words, a single font is scalable to any point size.

2. Font Sizes

A point size of a font was mentioned in the previous section and a point had been defined differently in different periods. In the present day of desktop publishing age, the most popular way of defining a point of a font or typeface is as a Desktop Publishing unit, which is 1/72 of an inch or 0.0139 in/0.35mm. Specified size of the Desktop Publishing Unit is set to scale size of an em-square which is an invisible box, the height of which is typically bit larger than distance from the tallest ascender to lowest descender. Measurements of non typographic units (meter, feet, and inches) are given as Caps height or height of Capital Letters.

3. Digital fonts

Digital fonts can be divided into two main categories: Bitmap fonts and outline fonts. Bitmap fonts store an image of character or a letter as a Bitmap whereas, in an outline font, an image of a character or a letter is stored as mathematical descriptions of lines or curves. Outlines fonts are also known as Vector Fonts. When outlines fonts are used, Rasterizing routines are carried out either by application software, Operating System or printers and outlines of characters in a font are rendered according to vector interpretations which are stored in the font.
Digital fonts also contain information on font metrics for composition as well as information on kerning pairs. Common fonts formats include METAFONT, PostScript Type1, True Type Fonts and Open Type fonts. Digital fonts are created using font editors such as Fontlab and Fontforge.

Typefaces are divided into two main categories: Serif and Sans serif. Serifs are a decorative type of typeface where a serif font comprises small features at the end of strokes within a letter. Fonts which do not have these small features are known as Sans Serif. ‘Sans’ means ‘Without’ in French. In other words Sans Serif means ‘without serif’. Usually, printed works such as newspapers and books are printed with Serif fonts. Web sites do not require specifying a particular type of font and are normally displayed with a font which is specified by the browser settings. But those web sites that are normally specified with a specific font are displayed with Sans Serif fonts as a general rule.

Some Sinhala Typefaces

Figure 3 Sans Serif Typeface

Figure 4 Serif (courtesy of Wikipedia)

Figure 5 Red Color provides for marking Serif

Figure 4 Bhashitha

Figure 5
4. Font Metrics

Understanding of font metrics is of great importance when designing fonts. Characters of most scripts of the world rest on an imagery horizontal line. This horizontal line is called a Baseline. Some glyphs (such as English letter ‘y’) of scripts have certain parts below baseline, and distance between edge of lowest descending part of the character of a script and the baseline is known as descent. And the part which descends below the baseline is called Descender. As opposed to the descent, certain characters of scripts have parts spanning upwards vertically such as letter ‘h’ and the distance between the character or the glyph of a script which spans farthest upwards and the baseline is known as ascent. Since languages such as English and German have capital and simple letters, heights that are taken by capital letters are known as Cap Height. When glyphs are aligned horizontally, an imaginary median line can be drawn above most of upper edge of English simple letters and this line is known as median. The distance between median line and baseline is called x-height. Sinhala and Tamil belong to Indic languages and they do not have Capital and Simple letters.

![Figure 6 Courtesy of Wikipedia](image)

5. Bitmap fonts

Bitmap fonts store their glyphs as an array of pixels or bitmaps. These fonts are also known less commonly as Raster fonts since bitmap fonts are simply a collection of Raster images of Glyphs. For each character of a font with single size, an image is created. For different sizes of a font, different sets of images to suit those sizes are created. As an example, if three different sizes of font are created with any combination of Bold and Italic sets, 12 different completely sets of fonts have to be created. Bitmap fonts are easier to create, and faster to render, but they have certain drawbacks. If Bitmap fonts to be arbitrarily scale up or to magnify the font to a larger size, the visual appearance of the font may not be appealing due to jagged edges of bitmap. Some of the advantages of Bitmap fonts are that they are extremely fast and easier to render; and they are easier to create than the other kinds. In addition, bitmaps give the same output when unscaled.
Due to speed and ease of rendering, Bitmap fonts are used for displaying on Linux and Windows recovery consoles. Bitmaps are also used in systems which have fewer resources such as embedded systems.

6. Outline fonts

Outline fonts are also known as Vector fonts as mentioned previously since borders and curves of characters of an outline font are given mathematically and are rendered by either Operating System, Software Application or printer. Outline fonts use Bezier curves in creating Vector fonts. Since curves and lines are given in mathematical formula, outline fonts can be scaled bigger without causing pixilation. Although outline fonts are aesthetically appealing, they require more processing and could produce undesirable rendering depending upon the font, and the rendering software, and output size. One of the major problems of outline fonts is the inability of accurately rendering of Bezier curves onto raster display. This has been overcome by methods, such as Font Hinting, which require more sophisticated and expensive software.

Historically, Adobe developed outline fonts and Type I and Type 3 were some of the original fonts which were developed. Using Postscript, the glyphs of Type I are outline fonts with Bezier curves. Unlike Type 1 of Adobe, Type 3 used more widely of PostScript language. But Type 3 had not used Font hinting and had issues when scaling up and down especially rendering on low resolution devices.

7. True Type fonts (TTF)

True type fonts (TTF) were developed by Apple to replace adobe’s Type 1 font in the 1980s and belong to the outline font category. Unlike type 1 and Type 3 of Adobe, True type fonts have become more popular and are widely used today. In those days, True type fonts gave font developers a greater degree of freedom and control, allowing them to manipulate to pixel level of a True Type Font which was not possible earlier and which may not be allowed any more in the modern day TTF fonts.

Apple licensed True Type fonts to Microsoft and Microsoft developed a Postscript like language to be used with Laser printers which was used by Apple on their Apple laser printers. Microsoft partnered with Monotype Corporation. This was a major company tracing its history to the latter part of the 1800s. Monotype Corporation was in manufacturing and production of printing machinery, to introduce several new technologies in Font hinting such anti aliasing which was later developed into full blown True Type hinting. This enabled Microsoft and Monotype engineers to use TTF fonts in low resolution devices such as Dot Matrix printers, a major breakthrough indeed. Microsoft began using TTF fonts on Windows 3.1 and Microsoft and Monotype Corporation developed several typefaces such as Courier new compatible with Courier, and Time New Roman compatible with Roman. These fonts have survived on some of the latest Microsoft Operating Systems such as Vista, Microsoft Windows 2008 and Windows 7.

In 1994, Microsoft introduced smart font technology which was known as True Type Open which was later developed into Open Type Fonts with the merger of Adobe’s Type 1 font outlines in 1996. Today almost every Operating System in the world uses True Type fonts.
As mentioned previously, Open Type fonts are an extension of True Type fonts with support for Postscript font data. Open Type fonts are also known as Smart Fonts. By 1996, Microsoft and Adobe had already formulated required standards for Open Type fonts. In western writing, usually each character is mapped to a shape hence a one to one map exits. Open Type fonts are important for non Western writing which may have glyphs that are created by the conjunction of two or more atomic characters or syllables.

In order for Open Type fonts to function, operating systems, or applications must support rendering of open type fonts and an operating system accomplishes this by having a rendering engine. Microsoft operating systems have a rendering engine which is known as Uniscribe and Linux has several rendering engines or shaping engines: Pango, QT etc.

Data on shapes of Glyphs and also rules as to how they will be rendered are stored in Open Type Fonts as Open Type Layout tables. These rules are parsed by a rendering engine and according to rules, shaper will either create a single glyph joining two or more glyphs which represent atomic syllables or will place a glyph, which represents several atomic syllables.

When creating an Open Type font, initially a TTF is created using tools such as FontLab, Fontforge or any other vector graphic based font creating tool (TTF creation is explained in the previous chapters). Once the font is created according a desired shape, it has to be programmed as to how the font will be rendered. For placing rules, different tools are used depending upon the programmer. Some use Microsoft VOLT (Visual Open type Layout Tool) or others FontForge; and some create rules by using Text editor which are then later compiled by using MS Volt, Fontforge or any other compilers, some of which are command line based.

Open Type fonts retain rendering information by having Open Type tables. Some of main Open Type tables used in Non Western Writing are substitution (GSUB) , Positioning (GPOS) and Glyph Definition (GDEF) tables which are categorized as advanced Typographic tables. Several other tables which are used in Open Type Fonts are listed below:

i. CMAP: character to Glyph mapping
ii. Head: Font Header
iii. Name: Naming table etc
iv. Post: PostScript information etc.

The above mentioned advanced Typographic tables are created based upon Open Type layout common format. This format allows storing of Open Type Layout data as Script, Language System, Features, and Lookup. The following gives a basic description of each of the above:

Script: Scripts are defined at the top level and may contain a collection of glyphs which belong to several languages. For instance Latin Script supports English, French, and German etc. In Open Type Fonts, multiple scripts can be supported by a single font. Arabic Script is used to write Farsi, and Urdu. Sinhala is defined under Sinhala Script and Language.
Language System: the Language system modifies the appearance and function of a particular language. For instance Urdu and Farsi have additional glyphs more than what Arabic requires. This is because Urdu and Farsi belong to Indo-European languages although written in Arabic which belongs to the Semitic language group. By defining a language system as Urdu, an open type font is able to render Urdu with those which are additional and specific for Urdu language.

Features: A language defines basic features of its typographic characteristics. Certain features are language specific and others apply to a Language group. In the absence of Language specific features, default features are applied.

Lookup tables: Features are implemented or stored by using Lookup tables. Two specific lookup tables are used: GPOS (Positioning) and GSUB (Substitution). Features of Open Type fonts can be implemented using either GPOS or GSUB lookup tables or the both. GPOS and GSUB can be applied to a group or a class of glyphs.
Figure 7 Open Type Layout Common format.(Ref: http://www.microsoft.com/Typography/OTSpec/chapter2.htm)

References:

 Addison Wesley Longman, 2001
Appendix I: How to determine and calculate height and width of a font

1. EM Unit measure of a Font is 16 points: 1EM = 16 points
2. Fontlab measures height and width UPM or Unit per EM
3. A glyph must be within a squire of following UPM unit for different fonts (FontLab calculations)
 i. PS fonts 1000
 ii. TTF 1024
 iii. TTF on a Microsoft platform must be 2048

4. Assuming 1EM square is 260 mm:
 - Caps = 200 mm (not needed for Sinhala and Tamil)
 - Ascender = 200 mm
 - x-height = 140 mm
 - Descender = -60

 For PS font: using 1000 UPM as measure,
 - Caps 200/260 * 1000 = 769
 - Ascender 200/260 * 1000 = 538
 - x-height 140/260 * 1000 = 769
 - Descender -60/260 * 1000 = -231
Appendix II

Figure 8 Source: Wikipedia

Figure 9 Source: Wikipedia
Chapter Seven

FONT DESIGN

Winnie Vitharana
University of Visual and Performing Arts

We will utilize CorelDraw’s tools to create the design. Start by opening the Tool box and selecting the CorelDraw Tool box. Then, use the selected tools to create the design.

(1st figure)

Next, choose the selected tool to create the design. Then, drag and drop the selected tool to create the design.

(2nd figure)
විශේෂණය ක්‍රියාත්මක කිරීමේදී ආදිය පිළිතුරු සමක්ෂ සිදු කරන ලදී. මෙම අංකය පුළුළු කිළිණි සුදා ලැබේ. 2 සහ 3 අංකය ප්‍රශ්ණයන් පිළිතුරු කිරීමේදී ආදිය කේත්‍රවියෙන් සමක්ෂ සිදු කරයි. මෙයින් ඉතිහාසික දැනටත් බැහැර සියල්ලේ භාජනයන්ට ලැබේ.
මමශ ිදුර්මළණයකරනු නෙදුට "ම" යොදාගනිමින් එම ආකාර එක select හැක. මෙන්ද මරින් අදිය විධිවිරියක් කරනු යොදාගනිමින් එක ගන්නාමෙන් එක පළකක් අදුක්කර කිරීමෙන්. මෙම ප්රධාන පුවරුණින් අහිමිත ගත්තම combine ෆී මෝ තැන්වේ. මෙම නිදසුන් ප්රධාන ගත්තම මෙන්ම එහින්ද බලාපොතක් වන ප්‍රධාන විධාන විධානය මෙන්මක් වන පුවරුණින් පුවරුණින් තෝරාගෙන එම පුවරුණින් තනින් සහ පුවරුණින් රූභක්.
ඔබ කල ුළුමේ tool box ආදා කොට. Artist Media Tool (1) යනුවෙන් එක 6 පිටතිවෙන් ක්‍රියාකාරී brush tool ආදා කොට සහ 3 පිටතිවෙන් ක්‍රියාකාරී brush ආදා කොට සැලකේ.

6

(6 මි ක්‍රියාකාරී)

විවිධ brush ආදා කොට brush ආදා 7 පිටතිවෙන් ක්‍රියාකාරී සැලකේ.

7. (11)

(7 මි ක්‍රියාකාරී)
(8) එමව හා මතෝරළගතේ hairline මධ්‍යාසන්නවත්තී "ශ" සහ "න" සාර්ථක "ඉ" කරන්න හා bold යි. එය හා මතෝරළ brush size මධ්‍යාසන්නවත්තී මත සමන්විත අක්‍රේණි විට මෙහෙයි මේ සාර්ථකයි. (8 විශ්‍රාමාව)

(9) එමව හා මතෝරළගතේ brush tool මෙහෙයි. හා මතෝරළ brush tool මෙහෙයි සමන්විත අක්‍රේණි විට මෙහෙයි. එය හා මතෝරළ break artistic media group apart සාර්ථකයි. එකත් මෙහෙයි උපාධී සාර්ථකයි. එය හා මතෝරළ brush tool මෙහෙයි සාර්ථකයි. කිරීම සමන්විත අක්‍රේණි විට මෙහෙයි. එය හා මතෝරළ break artistic media group apart සාර්ථකයි. එකත් මෙහෙයි සාර්ථකයි. එය හා මතෝරළ break artistic media group apart සාර්ථකයි. එකත් මෙහෙයි. (9 විශ්‍රාමාව)
අඳ එය ඉලතේ කිය හැයි. එය ඉලතේ කරනේ පෙන්සින් ව.

(10) එම පුම්සක් අවසන් දෙකම්කින් පිළිතුරු tool box ආකාර දෙකී ගොඩ් විය (icon එක) අවසන් දෙක වශයෙන් පුම්සක් අවසන් icon එක ආකාරයි. එය මෙම knife tool ආක පිළිගේ මෙය.
(11) එම ශ්‍රේණියර්කු මතුහු කුමක් කරන්න knife tool එක එක සිටීමෙන්ම hairline හා අතීත මතුහු මත මවකට මෙම මතුහු මත මවකට කරන්න. මිලි node මෙම ශ්‍රේණිය මතුහු මත මවකට කරන්න. මලන්න මෙම. මිලි සිටීමෙන්ම මල hairline පහ දෙළියන්න එම ෆා.

(11 ශ්‍රේණියර්කු)

(12 ශ්‍රේණියර්කු)

(12 ශ්‍රේණියර්කු)
මිෂඟට ක඼ අති (knife tool) නමුත් (13 ඉද සමඟ) shape tool (F10) පද්ධතියේදී.
දෙළින් එක ශබාතක මාවෙනි සියළි අතරක. පසුව විට 14 යෙදෙස් එක සැකසීම මෙහෙයුමූරු කණ්ඩායමක් ලෙස පිළිබඳ නොකරන්නේන්.

(14 විට කොටස)

Shape tool එක node එක සිටගැනීම click කරුණි. කාට එක සිටගැනීම click කරන්නේ එක node එක සිටදදාය. එක node එක්ක පැහැදිලි කිරිම පටතුමන් සාම පෙන්වියට නොකොට් කිරීම.

(15 විට කොටස) එක්ක සාම නොබලන්නේ nodes එක Delhi පවතී සිට එක්කේ විවිධ පැහැදිලි කලාපයේ සිටියේ යවුණි.

(15 විට කොටස)
ජකළමිතික ක්‍රියාව නිසා විචාර විශේෂයක් විශේෂය බල්ලවා එකක් free hand කෙනෙක් විශේෂයක් ගොඩ කරන්න.
වටශමනේ මමනේ එක පෙන්විය නැතුළිවන්නේ tool box ස්ථානය pen tool වේ පැරණි වන බැඳුම.
පැරණිව pen tool වේ ඊස්තිවරයා ගැටලුවකට පැමිණන්නේ පැරණිය.
පිළිව 17 පිළිව විදාහාර ඉහළ ගැටලුවකට පමණි පැරණිය වැසීම.

(17 පිළිව මාර්ග)

Page | 59
 sluwa ႏළි මේරි වැඩි shape tool එක ගෙන්න ඇති කරන්න සිය පිලිබඳේ වසර් තැනොමැති සැලසුමක් කියන්නේ. (18 පිටිං ආදිවාස)

(18 පිටිං ආදිවාස)
ඒ ව඲ශළ අලාක කරන ඔකම් 19 මෙ වැඩ පැවැති යුක්කම මෙ වැඩ පැවැති පිළිතුරු පවුල් නො කරන්නේ.

19

(19 මෙ වැඩ පැවැති)

මේව පිළිතුරු එක් කරන්නේ 20 මෙ වැඩ පැවැති පිළිතුරු.

20

(20 මෙ වැඩ පැවැති)
මමත් වනමේ පුබක් ස්ථාපනය කිරීම සඳහා ගැනීමක් කෙරේ. 21, 22 කු දෙළව අනුව ඒවා ලක් ලැබේ. 21, 22 ලංකාවේ පුබක් ස්ථාපනය කිරීම සඳහා ගැනීමක් කෙරේ. 23, 24 සහ 25 ලංකාවේ පුබක් ස්ථාපනය කිරීම සඳහා ගැනීමක් කෙරේ.
(25 අන්තර්ජනාවාදී)
දෆනේ මුඳ අරකම් අතීත මුඳේ අරකම් කරන්න. මෙම පෙතකට මා පැහැදිලි බොහෝ.

File>export. 26 විට භ්කා විශේෂ කරයි.
Export පිළිතුම් නමුත් 27 මෙය දේරා තැනෙන්න සිතුවම් නාවාකම ලැබේ. ආදි පිළිතුම් නමුත් EPS – (Encapsulated Post.Script) නාවාකම් නැතිය. නමුත් export නැතිය.

CorelDraw මෙහෙයින් යින්නා වන්කුළු නිසා මන් පැමිණිමේ අතරින් නිර්ණයක. නමුත් යින්නා යුගම් Font lab නාවාකම් යින්නා. Font lab මෙහෙයින් යින්නා වන්කුළු අතරින් නිර්ණයක glyph නාවාකම් යින්නා. නමුත් 28 මෙය දේරා තැනෙන්න සිතුවම් නාවාකම් නාවාකම් නැතිය අතර ශිල්පය සිතුවම් නැතිය.

(27 විට අභිඪේක)

(28 විට අභිඪේක)
මම් මෙ ආශූදුමක් යනු ගුහාවේ ඉතිහාසික තුන්ති අත් වර්තමාන අතීත සංවර්ශයක් ලෙස අවcription කලාව උද්ය පිළිතුරු තුන්ති 29 දිනේ පුත්තී ගුහාවේ අතීතකරණයක් අවමත් කොටස් සහිතයි.
දින්නා කියෙන සොයාගෙන 30 මිනි අත් නම්මේ වෙනුවන් ලෙස font lab මෙ විලෘත file ගැටුව නම් එකේදි කිමින් import වි නම්භ්වීම. මෙහෙය පැවති කොටස් විශේෂයෙන් හැක. එම ගැටුව මෙවන් ලංකාවේ EPS විශේෂය ලබන්නේ.
පහිට 31 ලිශ සහිතව වශයෙන් පෙරවාදී උදාහරණ සිදී ලියා නොමතිමින්, යනුවෙන් සමඟකින් විය. ප්‍රථමද අතා පෙරවාදී යනුවෙන් සමඟකින් ලියා නොමතිමින්.
ඒ මෙහි මෙම භාෂාව සහ හායිමෙන් දීකායෙන් පිළිතුරු කිරීමට පිළිතුරු. එම 32 දූ හායිමෙන් පිළිතුරු හායිමෙන් glyph පිළිතුරු කිරීමට පිළිතුරු. එම භාෂාව සහ හායිමෙන් පිළිතුරු හායිමෙන් දීකායෙන් පිළිතුරු කිරීමට පිළිතුරු.

(32 දූ හායිමෙන්)
glyph යින් වියක් නැවත් කිරීමේදී මෙන්ම අක්කරයා යිරීමේදී මෙන්ම. විවධානය වියක් නැවත් කිරීමේදී මෙන්ම අක්කරයා යිරීමේදී මෙන්ම. මෙහි මෙම පුවතු මෙන්ම මෙම කිරීමේදී මෙම පුවතු මෙම කිරීමේදී මෙම පුවතු මෙම කිරීමේදී මෙම පුවතු මෙම කිරීමේදී මෙම පුවතු මෙම කිරීමේදී මෙම පුවතු. මෙම පුවතු Arrow යින් වියක් නැවත් කිරීමේදී 34 වියක් නැවත් කිරීමේදී.
Arrow යන ක්ෂේත්‍රයක් අධික දක්වා පැහැදිලි කොට වීම සිදුවේ විදාහිරයේ විට විශේෂ අතර අතිරේක්කම.
Appendices

Font design

How to create a unicode font

1. Scanning the letter drawn by hand
2. Using Corel Trace to get the vector image. If there are any rough edges, edit with CorelDRAW.
3. Export as EPS file.
4. Create the letters using CorelDRAW.
5. Import all EPS files and place it correctly in Fontlab.
7. Complete and save in MS volt Software.
8. Create the rules.
Chapter Eight

What shall I do once a font is created?

Harsha Wijayawardhana

Sri Lanka requires many Sinhala and Tamil Unicode fonts. As you have seen throughout the book, we try to encourage you to come up with many varieties of Unicode fonts for different purposes: fonts for publishing books, cartoons etc. Sinhala and Tamil calligraphy require Unicode fonts and this is an area one should be addressing and through which you could gain recognition. But font designing must not be limited to Sinhala and Tamil Unicode fonts. Many requirements are still there for different shapes of Latin fonts as well. We can come up with a set of Latin Unicode fonts which will fit in with Sinhala and Tamil writing. Some Latin fonts with diacritic marks are required for writing Sinhala, Pali and Sanskrit using Roman letters.

When a font is designed, everyone asks the same question: “what shall I do with my font and how can I protect it from others copying it and from illegal use?”

A font designer like any other artist must come up with an adequate protection from violations of your rights. Once a font is designed, you must come up with a good name for your font and the font family. The font and the font family name must be included in your font information and the following image shows how this information is included in the font.

![Figure 10 A Font name and family name including copyright information](image_url)
If you are a good font designer, then you will find that this is a lucrative field. In the bygone days, Sinhala and Tamil fonts were not only copyright protected but the fonts were locked by using dongles. Fonts were also further locked through font encoding since a font maker selected encoding which was unique to him or her. In addition, without the dongle fitted to Parallel port in your computer, users could not use a font from the software package. Due to the wide spread use of Unicode fonts today, content in Unicode fonts can be opened with another Unicode font. You can still use a dongle to protect a very specific type of font and your application. Unlike those days, users are not locked by a specific font. Users will look for your font if your font is visually appealing. In order to increase awareness of your content, you have to create visually appealing fonts and you can freely distribute some of your fonts. In other words, the freer your font is and more visually appealing, the more you will be known as a good font designer. Another way of doing this is to market your application together with the font. You may release fonts freely but some members of the font family could only be obtained by buying your software package.

You may retain your Intellectual Property Rights especially the copyright of your font, by declaring your copyrights as provided in the figure 1. Copyrights of fonts, like other artistic work are protected in other countries which adhere to Berne convention, by reciprocity. If you are very specific about the name of your font and family, you can register the name as a trademark at the National Intellectual Property Office of Sri Lanka. For more information, you can visit www.nipo.gov.lk.

You can release fonts under a creative commons license. These licenses allow you to define what you expect font users to do with your fonts: you may decide that users of your font may copy, share but not remix, or you may allow users to remix also. Creative Commons licensing allows different a set of attributes or combinations to be given to an artistic product. You can visit Creative Commons at http://creativecommons.org/.

Fonts also can be released under SIL Open Font License where they can be freely used. This font license allows users to use fonts without charge as well as to improve on your product in a collaborative manner. Open Font License is a Free and Open Source License and it allows bundling, modification and redistribution. You can obtain further information on SIL Open Source at http://scripts.sil.org/cms/scripts/page.php?item_id=OFL.

If you have developed the font rules as well, then you may use the BSD license for the rules you have developed. The GPL license may be used for your glyphs. We recommend that you read all the options available carefully before you release your fonts to the public at large.