
Quality Coder
 2017v1.0

R

Quality Coder 2017v1.0

A curriculum put together with the expertise of

To walk you through the journey towards being a Quality Coder

R

Acknowledgements

SPECIAL THANKS
 The speakers, Amila De Silva from 99X Technology, Chamil

Jeewantha from Zone24x7, Chathura Dilan from WSO2,

Lasitha Dahanayake from iTelaSoft, Niruka Ruhunage

from Tiqri, Ruwan Wijesinghe from Virtusa and Subhash

Vithanapathirana from Sysco LABS, for their continued

support and utmost effort for developing the manual

and our heartiest gratitude to the mentors of Quality

Coder workshop, Asiri Warnakulasuriya from SyscoLabs,

Charith Sooriyaarachchi from 99x Technology, Damitha

Wimalasooriya from Tiqri, Isuru Senadheera from 99X
Technology, Maduranga Siriwardena, Pulasthi Mahawithana,

Chanuka Dissanayake from WSO2 for their support in making

this workshop a success.

OUR SINCERE GRATITUDE

Chathuranga Wijeratna, Nuwan Weerasinghe, Sankalpa

Gamwarige from Zone24x7, Chinthaka Dissanayake from

Tiqri, Hasith Yaggahavita from 99X Technology, Indaka

Raigama from iTelaSoft, Shevan Goonetilleke and Yasith

Tharindu from WSO2 for their continued support.

Contents

1.0 Why Quality Code… ..	 7
	 What is Quality Code? ..	 7
	 Features of Quality Code ..	 8
	 Readability ...	 8
	 Extensibility ..	 8
	 Testability ..	 8
	 Why Code Quality is Important? ...	 8
	 How to identify Good Code from Bad Code? 	 9
	 Importance of Quality Code ..	 9
	 Journey towards Quality ...	 10

2.0 Source Control Tools & Peer Review ..	 11
	 Why Review? ...	 11
	 Automated Reviews ..	 12
	 Source Control Tools ...	 12
	 Why Source Control? ...	 13
	 Branching ...	 14
	 Continuous Integration ...	 15
	 Review as Part of the Process ...	 15

3.0 Static Code Analysis ...	 17
	 What is Static Analysis ..	 17
	 How Static Analysis can help Software Quality 	 17
	 Static Analysis Tools ..	 17
	 Static Analysis Platforms ..	 18
	 SonarQube ..	 18
	 SonarQube Server and Runner setup ..	 19
	 Running SonarQube Server ...	 19
	 Access SonarQube Server ..	 19
	 SonarQube Runner (Standalone) ..	 20
	 View SonarQube Analysis Results...	 20

4.0 Object Oriented Programming ..	 22
	 Objects and Classes ..	 22
	 Object ..	 22
	 Classes and Objects ..	 22
	 Class ...	 23
	 Class ...	 23
	 Object ...	 23
	 Television ..	 24
	 Class ...	 24
	 Concepts of Object Oriented Programming ..	 25
	 Encapsulation ..	 25
	 Inheritance ..	 26
	 Polymorphism ...	 27
	 Abstraction ...	 28
	 SOLID Principles ..	 28
	 Single responsibility principle ...	 28
	 Open for extension, but closed for modification (Open-Closed Principal)	 29
	 Liskov substitution principle ...	 29
	 Interface segregation principle ...	 30
	 Dependency inversion principle ..	 30

5.0 What is a Unit? ..	 32
	 What is the smallest unit in the society? ...	 32
	 Is coupling good for the society? ...	 32
	 How to reduce coupling? ...	 33
	 Importance of a unit ..	 33
	 What is Unit? ..	 33
	 Class? Why not Method (OOP)? ...	 33
	 Characteristics of a Good Unit ..	 34
	 Common Problems related to Unit ..	 34

6.0 What is a Unit Test? ...	 37
	 Characteristics of a Good Unit Test ...	 37
	 Isolating A Unit for Testing ...	 37
	 Test Flow ...	 38
	 How to Test 1.0 ..	 38
	 How to Test 1.1 ...	 38

	 How to Test 1.2 ...	 39
	 Common Complaints About Unit Testing ...	 41
	 Solution ...	 41
	 Rules: TFD ..	 41
	 Test First Benefits (Vs Test Late) ..	 41
	 What is TDD? ..	 42
	 Rules: TDD ..	 42
	 Tools with TDD ...	 42
	 ATDD vs TDD ...	 42
	 Additional time due to TDD? ..	 42

7.0 Writing Quality Code ..	 43
	 Why Maintainability ..	 43
	 What makes the code maintainable ...	 43
	 What makes the code simple ..	 43
	 What makes the code Readable ..	 44
	 Use meaningful names ..	 44
	 Follow a consistent naming convention ...	 45
	 How to make methods looks simple ..	 45
	 Simple Methods- Remove Nested Conditions ..	 46
	 Simple Methods- Remove Nested Conditions ..	 46
	 Simple Methods - Remove Control Flags ...	 47
	 Simple Methods - Descripting local variables ..	 48
	 Simple Methods - Split Temp Variables ...	 48
	 Break long methods into small methods ...	 48
	 Break Methods - Use methods objects ...	 51
	 Break Methods - Use methods objects ...	 51
	 Properly Format the Code ...	 52
	 Add Proper Comments ...	 52
	 What makes the code easy to change ...	 53
	 To make the code easy to change - Use small and cohesive classes 	 53
	 How to encapsulate the implementation ...	 53
	 Avoid duplicate logic ..	 53
	 Have a good Diagnostic Infrastructure ..	 54
	 Input Validation ..	 54
	 Exception Handling ...	 55
	 Logging ...	 55

Quality Code
The ICT industry in Sri Lanka is facing a growing issue where developers produce software
code that is of low quality and does not adhere to industry standards. This directly affects the
efficiency and standard of the software products built in the country. As a software exporting
nation, it is crucial that Sri Lanka upholds the current reputation of High Quality Code.
Industry claims that the software quality is upheld by the direct efforts of the Senior Level
Developers who must fix the mundane errors of the developers below them.

The usual solution taken up is to let the developer learn while on the job and gradually get
them to code with higher quality; this is a time-consuming process. To overcome this issue,
‘Quality Code’ was drafted as a hand book with best practices. Quality Code guides the
developers with the best practices and knowledge extracted from a blend of the industry
experts in the IT industry to produce high quality software products.

1.0 Why Quality Code…
What is Quality Code?
Quality is something which you can’t define exactly as it depends on the background you’re
coming from. It is “the standard of something as measured against other things of a similar
kind; the degree of excellence of something”. When it comes to software, quality of the code
highly matters.

But what is Quality Code? “Quality code is something subjective. It varies from a person to
another depending on their knowledge, expertise level, taste on quality and so on. Because,
the code which we think as the best code might not be the best for someone else”, says
Subash.

“Clean code is simple and direct.
Clean code reads like well-written prose.” [1]

Quality Code/ Clean code is like a good book that you have read. When you read word by
word through sentences and paragraphs of that book, the story gets replaced by images in
your mind. The story becomes that much clean & clear that you’re likely watching a movie of
that book. This is what happens when you read something well written. With what Grady
Booch says, your code also should be the same. The person who reads your code should not
have to put an additional effort to understand the purpose of your code. The reader should be
able to understand your code by simply looking at it.

“Clean code always looks like it was written by someone who cares.” [2]

When you read a clean code, you’ll understand that the original author of that code has
genuinely cared for what he’s been crafting. It will be evident that the developer has focused
on details and taken the effort to keep it simple & orderly.

“If you want your code to be easy to write, make it easy to read.” [3]

Think of a code that you’ve written, maybe a simple class. At the very beginning of that code,
you comment on top of it as author with your name. This means the programmer is the author
of that code. Authors have a special responsibility to communicate with their readers. The
most important thing as a programmer for you to understand is that when you write a line of
code, remembering that you’re an author, and that you are going to have many readers to it.

Page | 7

Features of Quality Code
In writing quality code there are some features identified by experts that guide authors to
write clean code.

Readability
Readability is one of the main features in quality code. It means how easy it is for someone
to understand the purpose of your code.

What makes code readable?

• Good naming of variables, functions and classes
• Good comments
• Consistent coding standard
• KISS (Keep It Simple, Stupid) principle.

Extensibility
Extensibility implies how easy it is for you to add a new functionality or new feature to your
existing code base. This is another key component in writing quality code.

How to write extensible code,

• Conscious usage of OOP principles, Design patterns.
• SOLID principles.
• DRY (Don’t Repeat Yourself) principle.

Testability
Testability is another key component that affects the quality of the code and inspects how
much of your code can be automatically tested.

What are the effective approaches for testability?

• Unit Testing with high code coverage.
• Test Driven Development (TDD).

Golden rule of Quality Code is, it is easy to understand & easy to change.

Why Code Quality is Important?
What’s the problem with a software that works? A working software might imply that it has
met the customer requirements which shows the external quality of the software. But Code
Quality consists of both external & the internal quality of the software.

Code quality is the most important fact of software as low code quality affects the
maintenance, modifications or adjustments of the software, which is time consuming and
leads to immense financial losses.

Page | 8

• Few places to change…
• Easy to find impact…
• Less mistakes!

How to identify Good Code from Bad Code?
Ex: -

Given below is a Spaghetti code. If the orange areas are the pieces of code that needs to be
changed or modified, see the number of places that you have got to change. It makes it harder
to traverse through the code and may lead to you to step on irrelevant segments of code and
do unwanted changes that might introduce bugs.

Given below is a more organized Quality Code. When compared to a spaghetti code only
few places are there to be changed. It is easy to find the impacted areas and to navigate from
one to another which creates less bugs than before.

Importance of Quality Code
• Code is never written just once and then forgotten
• We read code more than we write!
• Cost of bad code is high
• Quality is a must to be agile

“Programs must be written for people to read,
and only incidentally for machines to execute.”

• Many places to change…
• Hard to find impact…
• More mistakes = Bugs!

• Many places to change…
• Hard to find impact…
• More mistakes = Bugs!

Image Source -https://www.slideshare.net/MarcoBeelen/designing-testable-clean-code-part-of-tdd-serie-of-the-haarlem-software-developer-meetup

Image Source -https://www.slideshare.net/MarcoBeelen/designing-testable-clean-code-part-of-tdd-serie-of-the-haarlem-software-developer-meetup

Features of Quality Code
In writing quality code there are some features identified by experts that guide authors to
write clean code.

Readability
Readability is one of the main features in quality code. It means how easy it is for someone
to understand the purpose of your code.

What makes code readable?

• Good naming of variables, functions and classes
• Good comments
• Consistent coding standard
• KISS (Keep It Simple, Stupid) principle.

Extensibility
Extensibility implies how easy it is for you to add a new functionality or new feature to your
existing code base. This is another key component in writing quality code.

How to write extensible code,

• Conscious usage of OOP principles, Design patterns.
• SOLID principles.
• DRY (Don’t Repeat Yourself) principle.

Testability
Testability is another key component that affects the quality of the code and inspects how
much of your code can be automatically tested.

What are the effective approaches for testability?

• Unit Testing with high code coverage.
• Test Driven Development (TDD).

Golden rule of Quality Code is, it is easy to understand & easy to change.

Why Code Quality is Important?
What’s the problem with a software that works? A working software might imply that it has
met the customer requirements which shows the external quality of the software. But Code
Quality consists of both external & the internal quality of the software.

Code quality is the most important fact of software as low code quality affects the
maintenance, modifications or adjustments of the software, which is time consuming and
leads to immense financial losses.

Page | 9

Journey towards Quality…
• Quality should start early!
• Learn by reading good code (…and bad code!)
• Code reviews — give feedback, get feedback
• Know your tools — IDE, Source Control, Frameworks etc.
• Passion — Love, care and be proud of your code.
• Practice, practice and practice!!!

Rule of thumb:

“Always code as if the guy who ends up maintaining your
code will be a violent psychopath who knows where you

live!”

Image Source - https://tipyang.wordpress.com/2013/08/08/ra-7-computer-ethicsnetiquette/

https://www.youtube.com/watch?v=645ltyDm6LU

Page | 10

2.0 Source Control Tools & Peer Review
The main intention of this chapter is to go through source control mechanisms and to learn
how we can conduct peer reviews. “Code review is the systematic examination of computer
source code. It is intended to find mistakes overlooked in the initial development phase,
improving the overall quality of software”

Why Review?
Someone might not see a way of writing a
piece of code in the best possible way and
another person might see a better way of
writing the exact same code. An error free
code of one person might be full of errors to
another. It is a must to identify these human
errors to develop a quality code.

The way you write the code should be readable
to everyone. If the code is written without a
standard, there’s a high possibility of getting
complaints from the readers. Therefore, coding
standards is another key component to be
considered.

It is possible to produce code that works, even
without coding standards and human errors.
But we should also look at the code quality.
That’s why code reviews are needed.

Tools for Reviewing
To improve the overall quality of the software, code reviews are a must. There are various
methods to review code. In peer reviews one or more colleagues examine the code produced
by an individual to evaluate its technical content and quality. Given below are some of the
commonly used tools used in code review.

Journey towards Quality…
• Quality should start early!
• Learn by reading good code (…and bad code!)
• Code reviews — give feedback, get feedback
• Know your tools — IDE, Source Control, Frameworks etc.
• Passion — Love, care and be proud of your code.
• Practice, practice and practice!!!

Rule of thumb:

“Always code as if the guy who ends up maintaining your
code will be a violent psychopath who knows where you

live!”

Image Source - https://tipyang.wordpress.com/2013/08/08/ra-7-computer-ethicsnetiquette/

https://www.youtube.com/watch?v=645ltyDm6LU

Page | 11

Automated Reviews
Certain reviews can be done
by a machine itself. There are
two types of reviews that act
on compile time &
deployment time

Ex: - ReSharper (Commonly
used	 in	 .Net),	 enforces	 the	
author to stick to a specific
coding convention and also
helps get an idea about code
quality. Task Runners analyze
the code etc. at compile time.

SonarQube is a review tool used in the deployment phase and runs unit tests, checks it against
conventions etc. at the deployment time. Code coverage tools test whether you have enough
test coverage for your code at the deployment phase. Authors can also run the code coverage
tools in the IDE itself.

Source Control Tools

Source control is management of software code across many
developers at the same time.

If there’s a development team to develop a specific product, there should be a system to
manage it. That’s why the source control systems are being used. Given below is an over
view of source control.

https://www.youtube.com/watch?v=T10xPJIkBJk

Page | 12

Assume that there’s a source control for a
product. Each developer uses the source
control to work on their own machine.
There are some build servers configured to
pull the data from the source control. All
the developers connect to the server where
source control is hosted, fetches the code
into their own machine and works on it.

Once the developer is satisfied, he commits
the changes to the source control system.
Once a developer commits (makes changes to the code and uploads it), if another developer
pulls the code from the source control system, the second developer gets updated with all the
changes that were committed by the first developer.

The idea is that all the developers should try to maintain the source control server at an ‘ok’
level. Developers should not commit if there’s a break of a functionality. If the developers are
using continuous deployment it is possible to get the continuous deployment servers to
monitor the source control systems so that it will just take the data and publish it.

Why Source Control?
Source control systems also support
maintaining history of code that allows
reversibility. If a developer wants to reverse
the code that he developed, that can be
always reversed with the use of source
control. It maintains the history of
development.

Concurrency means that several developers can work at the same time. Source control helps
multiple developers collaborate on the same code.

Annotation helps colleagues in the same team annotate each other’s code. If the team has the
required tools they can comment and mark on the code for improvement.

Source Control Tools.
Given below are some of the mostly used source control tools.

Automated Reviews
Certain reviews can be done
by a machine itself. There are
two types of reviews that act
on compile time &
deployment time

Ex: - ReSharper (Commonly
used	 in	 .Net),	 enforces	 the	
author to stick to a specific
coding convention and also
helps get an idea about code
quality. Task Runners analyze
the code etc. at compile time.

SonarQube is a review tool used in the deployment phase and runs unit tests, checks it against
conventions etc. at the deployment time. Code coverage tools test whether you have enough
test coverage for your code at the deployment phase. Authors can also run the code coverage
tools in the IDE itself.

Source Control Tools

Source control is management of software code across many
developers at the same time.

If there’s a development team to develop a specific product, there should be a system to
manage it. That’s why the source control systems are being used. Given below is an over
view of source control.

https://www.youtube.com/watch?v=T10xPJIkBJk

Page | 13

Branching
With source control, you also get this concept called branching. Assume that there is a sprint
and that there are three long running tasks to complete in the sprint that hardly overlap with
each other. There’s a panel called branching where the developer can take a copy of the
source control & create a different branch. Since it’s a copy of the branch, whatever changes
that are made in the branch won’t affect the source control until the developer merges the
branch with the master.

Master is like the production. It’s clean with not many changes on it. Develop branch is the
branch that developers work on. When two people are working on two different features they
create their own branches and work on them. Then you do interrelated commits, and once
you develop, you merge it with the development branch. Once someone decides that it is time
to do a release, you create a release branch (Release Candidate). That’s what the QA tests.
Because development branch is a branch where to do experiments as well. But once you
finish it, you create a stable branch for the release.

Once the QA decides that the release is bug free and in good quality, then it is merged into
the master branch. But you also have to merge it with the development branch because if you
have done any bug fixes those bugs are there in the development branch as well. When you
encounter a production bug you create a branch in the hotfix. Once the product is delivered
and a bug is discovered afterwards, the main intention is to do a minimum change and fix the
bug.

Page | 14

Continuous Integration
Continuous Integration (CI) is a development practice that requires developers
to integrate code into a shared repository several times a day. Each check-in is then verified
by an automated build, allowing teams to detect problems early.

Once you complete branching, you hook your master branch into the built servers in here.
Whenever you do a change on your master branch, the continuous integration servers will
take that and automatically deploy it on the production environment.

Review as Part of the Process
Review should be a part of the product. Given below shows how a typical review should look
like.

Once you do the development you review the code at compile time using tools. Once you
complete	your	compile	time	review	you	do	the	peer	review.	Next	you	do	the deployment time
review with the tools (ex: - SonarQube). Only after completing these will you call QA.
Developers should take a lot of responsibility on testing as it directly affects the quality of the
software product.

https://www.youtube.com/watch?v=xSv_m3KhUO8

Branching
With source control, you also get this concept called branching. Assume that there is a sprint
and that there are three long running tasks to complete in the sprint that hardly overlap with
each other. There’s a panel called branching where the developer can take a copy of the
source control & create a different branch. Since it’s a copy of the branch, whatever changes
that are made in the branch won’t affect the source control until the developer merges the
branch with the master.

Master is like the production. It’s clean with not many changes on it. Develop branch is the
branch that developers work on. When two people are working on two different features they
create their own branches and work on them. Then you do interrelated commits, and once
you develop, you merge it with the development branch. Once someone decides that it is time
to do a release, you create a release branch (Release Candidate). That’s what the QA tests.
Because development branch is a branch where to do experiments as well. But once you
finish it, you create a stable branch for the release.

Once the QA decides that the release is bug free and in good quality, then it is merged into
the master branch. But you also have to merge it with the development branch because if you
have done any bug fixes those bugs are there in the development branch as well. When you
encounter a production bug you create a branch in the hotfix. Once the product is delivered
and a bug is discovered afterwards, the main intention is to do a minimum change and fix the
bug.

Page | 15

Lab Exercise
Source control exercise

1. Sign in to GITHUB
2. Create a new repository
3. Download GIT
4. echo "# test" >> README.md
5. git init
6. git add README.md
7. git commit -m "first commit"
8. git remote add origin https://github.com/amiladesilva/test.git
9. git push -u origin master
10. Download GIT Extensions
11. Open the same repository
12. Push it to a different branch

GITHUB for beginners: https://www.youtube.com/watch?v=0fKg7e37bQE

Page | 16

3.0 Static Code Analysis
In the early stages of programming there were no proper rules or specific formats to follow.
Most projects had small functions to code and debug with few team members. When
programmes become larger as to the enterprise level, the number of development teams grew
and the complexity of the programmes grew as well. With the high complexity, people started
identifying more errors and patterns that have a high probability of leading to bugs in the
programmes.

What is Static Analysis

With a complete analysis of the code, developers realized that
there are certain patterns in some codes that have a high
probability of leading to errors. These patterns were used to make
a set of rules to analyze the code before going in to the compiler.

Static analysis, also called static code analysis is a method of
computer program debugging that is done by examining the code
without executing the program. Static analysis does not validate
the logic of the code but validates whether there’s a certain pattern
in the code that can be a potential issue leading to a bug.

How Static Analysis can help Software Quality

• There are two ways of inspecting software quality
o Examine the behavior during the run-time (Dynamic analysis), which is done

by the computer using the compiler.
o Inspect source code / Code reviews (Static analysis), which is done by looking

at the code and going through it before sending it to the compiler.

• Inspecting and analyzing the source code of the program before it is tested lowers the
cost of finding and fixing bugs in software in the early stage of the development
cycle.

Static analysis helps to read, review and fix the potential bugs that saves time and effort of
developers.

Static Analysis Tools
• Developers are human beings, and everyone make mistakes. So, it is extremely hard

to guarantee that things would be done correctly in the first time itself.
• Employing static code analysis tools is one of the best practices in software

development.

Image Source - https://libidothanato.wordpress.com/2017/11/14/libido-thanato-kapitel4seite6-libido/

Lab Exercise
Source control exercise

1. Sign in to GITHUB
2. Create a new repository
3. Download GIT
4. echo "# test" >> README.md
5. git init
6. git add README.md
7. git commit -m "first commit"
8. git remote add origin https://github.com/amiladesilva/test.git
9. git push -u origin master
10. Download GIT Extensions
11. Open the same repository
12. Push it to a different branch

GITHUB for beginners: https://www.youtube.com/watch?v=0fKg7e37bQE

Page | 17

• Some of the Static analysis tools available are,
o .NET

▪ CodeIt.Right, FxCop, StyleCop etc.
o Java

▪ PMD, CheckStyle, FindBug etc.
o JavaScript

▪ JSHint, JSLint etc.

Static Analysis Platforms

• Static analysis platforms come with server components
• Static analysis platforms support multiple programming languages and produce

various matrices for analysis and even maintains historical data.
o SonarQube, Moose, Kiuwan are some of the examples

• Selecting the right tool
o There are language specific static analysis tools that come as IDE plug-ins;

They are helpful for the purpose of catching for issues while coding.
o Static analysis platforms support multiple languages, handle multiple

projects and run independently without a development environment. They
are even suitable for organization level static code analysis and for
providing various views and dashboards.

SonarQube
• Supports 20+ programming languages.
• More than 40 open-source and commercial plugins.
• Supports integration with famous build tools such as Maven, Ant, MSBuild, Jenkins

and Gradle
• Covers the 7 axes of code quality

o Architecture & Design
o Comments
o Coding rules
o Potential Bugs
o Duplication
o Unit Test
o Complexity

Page | 18

SonarQube Server and Runner setup
• Download and install Java JDK if it's not available (Java 8).
• Download SonarQube from https://www.sonarqube.org/downloads/ and unzip to a

desire location.
o Make sure port 9000 is available for listening

• Download SonarQube runner from,
o https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube

+Scanner and unzip to a desire location.

Running SonarQube Server

Start the SonarQube server using the
startup script available in;

SONAR_HOME/bin/<Your	 Platform	
Folder>/<sonar.sh	or	StartSonar.bat>

Access SonarQube Server
After SonarQube starts, access the web interface of the SonarQube at http://localhost:9000.

• Some of the Static analysis tools available are,
o .NET

▪ CodeIt.Right, FxCop, StyleCop etc.
o Java

▪ PMD, CheckStyle, FindBug etc.
o JavaScript

▪ JSHint, JSLint etc.

Static Analysis Platforms

• Static analysis platforms come with server components
• Static analysis platforms support multiple programming languages and produce

various matrices for analysis and even maintains historical data.
o SonarQube, Moose, Kiuwan are some of the examples

• Selecting the right tool
o There are language specific static analysis tools that come as IDE plug-ins;

They are helpful for the purpose of catching for issues while coding.
o Static analysis platforms support multiple languages, handle multiple

projects and run independently without a development environment. They
are even suitable for organization level static code analysis and for
providing various views and dashboards.

SonarQube
• Supports 20+ programming languages.
• More than 40 open-source and commercial plugins.
• Supports integration with famous build tools such as Maven, Ant, MSBuild, Jenkins

and Gradle
• Covers the 7 axes of code quality

o Architecture & Design
o Comments
o Coding rules
o Potential Bugs
o Duplication
o Unit Test
o Complexity

Page | 19

SonarQube Runner (Standalone)
• Set	 the	 environment	 variable	 SONAR_RUNNER_HOME	 and	 set	 the	 value	 to	 the

path you extracted SonarQube runner zip file (e.g C:\sonar-scanner-3.0.1.733-
windows).

• Append Sonar runner bin folder to the path environment variable.
• Update	 Sonar	 runner	 setting	 in SONAR_RUNNER_HOME/conf/sonar-

scanner.properties file (specify correct URL, e.g http://localhost:9000).
• In your project home folder, create a file called 'sonar-project.properties' and enter the

following lines as content (change values as you needed).
o sonar.projectKey=mysample:project
o sonar.projectName=Java	Sample	project
o sonar.projectVersion=1.0
o sonar.sources=src\\main\\java

• Run 'sonar-scanner' command from your project home (make sure the project has no
compile errors)

View SonarQube Analysis Results
• Access SonarQube server at http://localhost:9000

Page | 20

• Issue details

Keep in mind…
• Clearing all static analysis issues doesn't mean your code is in good quality.
• Static analysis tools only catch mistake that have a common pattern.
• Therefore, use wisely for your benefit.

SonarQube	for	beginners:	https://www.youtube.com/watch?v=xLO8Q_F3jIg	

SonarQube Runner (Standalone)
• Set	 the	 environment	 variable	 SONAR_RUNNER_HOME	 and	 set	 the	 value	 to	 the

path you extracted SonarQube runner zip file (e.g C:\sonar-scanner-3.0.1.733-
windows).

• Append Sonar runner bin folder to the path environment variable.
• Update	 Sonar	 runner	 setting	 in SONAR_RUNNER_HOME/conf/sonar-

scanner.properties file (specify correct URL, e.g http://localhost:9000).
• In your project home folder, create a file called 'sonar-project.properties' and enter the

following lines as content (change values as you needed).
o sonar.projectKey=mysample:project
o sonar.projectName=Java	Sample	project
o sonar.projectVersion=1.0
o sonar.sources=src\\main\\java

• Run 'sonar-scanner' command from your project home (make sure the project has no
compile errors)

View SonarQube Analysis Results
• Access SonarQube server at http://localhost:9000

Page | 21

4.0 Object Oriented Programming
Objects and Classes
If you are asked to identify the
objects in a picture, what things
would you identify?

Chairs, Table, TV…

Why did you select the TV as an
object? Because we humans are
naturally tempted to think of those
things as objects.

Objects in the real world are much
similar to the objects that are built in
object-oriented programming. But it
isn’t the exact same as it is said.

Object
Once you identify the object, then you should
understand the behaviors and the states of the
object. States are the attributes of an object
while the behavior is what you can function.

Ex: - Television

Behaviors are the
functions that you can
perform in the object
‘Television’. Such as
change the channel or

mute the volume…etc.

States are the attributes of the Television like
channel number, volume level…etc.

Classes and Objects

Classes are some kind of a mold where the
objects are created out of it. You	are	creating	
objects out of classes.

Image Source - http://tjoneswrites.com/wp-content/uploads/2017/10/tv-stand-for-sale-ghana-wall-
hung-tv-stand-costco-tv-stand-black-friday-wall-mounted-tv-vs-stand-wall-mounted-tv-floor-stand-
attaching-plasma-tv-to-wall.jpg

Page | 22

Class
Classes have all the attributes and behaviors. When you’re creating an object you are actually
assigning values to those attributes.

Class
• Extensible program-code-template for creating

objects
• The blueprint from which individual objects

are created

Object
Given below is a template. From that template you can create objects. It has attributes as well as
behaviors. At the end, you’re creating objects out of classes.

• Instance of a class

4.0 Object Oriented Programming
Objects and Classes
If you are asked to identify the
objects in a picture, what things
would you identify?

Chairs, Table, TV…

Why did you select the TV as an
object? Because we humans are
naturally tempted to think of those
things as objects.

Objects in the real world are much
similar to the objects that are built in
object-oriented programming. But it
isn’t the exact same as it is said.

Object
Once you identify the object, then you should
understand the behaviors and the states of the
object. States are the attributes of an object
while the behavior is what you can function.

Ex: - Television

Behaviors are the
functions that you can
perform in the object
‘Television’. Such as
change the channel or

mute the volume…etc.

States are the attributes of the Television like
channel number, volume level…etc.

Classes and Objects

Classes are some kind of a mold where the
objects are created out of it. You	are	creating	
objects out of classes.

Image Source - http://tjoneswrites.com/wp-content/uploads/2017/10/tv-stand-for-sale-ghana-wall-
hung-tv-stand-costco-tv-stand-black-friday-wall-mounted-tv-vs-stand-wall-mounted-tv-floor-stand-
attaching-plasma-tv-to-wall.jpg

Page | 23

Television
• Can use a remote control or button to control it.
• You	do	not	open	its	case	to	use	it.
• If you want to extend its functionalities like to

watch a movie, you can simply connect it with a
DVD player

• It is a complete product when you buy it. How to
use it and external requirements are very well
documented.

• It will not crash while you use it.

You	have	to	think	of your objects and classes with similar analogy. When you’re developing
a product, first you are creating the class and then the objects. In doing that, first you need to
identify the interfaces - how other things connect with your object.	You	 provide	what	 the
customer requires. Therefore, you don’t want others to modify it. It is like a solid thing.

Ex: - In a Television, manufacturers don’t expect their customers to remove the casings and
do modifications. If someone wants to extend its functionalities they can do it through the
interfaces that are provided. Like extending the functionality of a Television via its USB port
or HDMI port available...

Class
• Represents a clear concept, regardless

of wherever it is uses.
• Has a well-defined interface
• Complete and well documented
• Should be robust

Image Source - https://oimparcial.com.br/noticias/2017/12/vai-precisar-comprar-conversor-digital-saiba-quanto-custa-e-como-funciona/

Page | 24

Software objects are conceptually similar to real-world objects. Sometimes they could be
different too. Ex: -

Concepts of Object Oriented Programming
Encapsulation

• Hide the mechanics of the object
• You	 do	 not	want	 to	 understand	 how	 every	 bit	 and	 piece	 of	 the	 television	works	 in	

order to operate it.
• The user needs only to understand the interface.
• The programmer can change the implementation but need not notify the user.
• Public methods to describe the interface
• Private method to describe the implementation

Television
• Can use a remote control or button to control it.
• You	do	not	open	its	case	to	use	it.
• If you want to extend its functionalities like to

watch a movie, you can simply connect it with a
DVD player

• It is a complete product when you buy it. How to
use it and external requirements are very well
documented.

• It will not crash while you use it.

You	have	to	think	of your objects and classes with similar analogy. When you’re developing
a product, first you are creating the class and then the objects. In doing that, first you need to
identify the interfaces - how other things connect with your object.	You	 provide	what	 the
customer requires. Therefore, you don’t want others to modify it. It is like a solid thing.

Ex: - In a Television, manufacturers don’t expect their customers to remove the casings and
do modifications. If someone wants to extend its functionalities they can do it through the
interfaces that are provided. Like extending the functionality of a Television via its USB port
or HDMI port available...

Class
• Represents a clear concept, regardless

of wherever it is uses.
• Has a well-defined interface
• Complete and well documented
• Should be robust

Image Source - https://oimparcial.com.br/noticias/2017/12/vai-precisar-comprar-conversor-digital-saiba-quanto-custa-e-como-funciona/

Page | 25

Inheritance
If you think of early 90’s the mobile had only one facility, take calls. But with the time, it
modified with facilities such as sending SMS, browsing Internet and many more. In real
world terms this is inheritance.	New	functionalities	are	inherited	from	the	old	ones.

In an object-oriented scenario, inheritance is a little different from the real-world. Inheritance
enables new objects to take on the properties of existing objects. In the below example the
Vehicle class is used as the base and the sub classes such as Car, Bus and Bike inherits from
the base class.

Page | 26

Polymorphism
Animals can make sounds. For a single method
– ‘to make sound’, different animals will make
different sounds.

In programming also, a method can be
implemented in different forms. This is called
polymorphism.

• Polymorphism means "multiple forms".
• Multiple forms of the same method

Polymorphism refers to the ability of an object to provide different behaviors depending on
its own nature. There are two ways of it: Overriding & Overloading.

Overriding Methods
Method Overriding is when a method defined in a superclass or interface is re-defined by one
of its subclasses, thus modifying/replacing the behavior the superclass provides.

Overloading Methods
It refers to defining different forms of a method. You	 have	 one	 method	 where	 it	 takes	
different parameters.

• The same method name can be used, but the number of parameters could be different.
o add (intx, inty)
o add (intx, inty, intz)

Inheritance
If you think of early 90’s the mobile had only one facility, take calls. But with the time, it
modified with facilities such as sending SMS, browsing Internet and many more. In real
world terms this is inheritance.	New	functionalities	are	inherited	from	the	old	ones.

In an object-oriented scenario, inheritance is a little different from the real-world. Inheritance
enables new objects to take on the properties of existing objects. In the below example the
Vehicle class is used as the base and the sub classes such as Car, Bus and Bike inherits from
the base class.

Page | 27

Abstraction
Through the process of abstraction, a programmer hides all but
the relevant data about an object in order to reduce complexity
and increase efficiency.

• Can you think about the instance of a vehicle?
o Cannot be instantiated
o Can only be used through inheritance

SOLID Principles
It is the acronym for five design principles intended to make software designs more
understandable, flexible and maintainable.

Single responsibility principle
Assume there is a VGA port and a USB port.
Since they are independent from each other
it’s easy to do modifications. If they were in
the same port when a modification occurs
such as the replacement of VGA with a HDMI
port, the complete port should be changed.

In the same way if one class handles multiple
responsibilities the whole class has to be
changed in case of a modification. A class
should have one and only one reason to
change, meaning that a class should have only
one job.

Page | 28

Open for extension, but closed for modification (Open-Closed Principal)

If you need to watch a movie, no
one expects to remove the casing
and do a modification to the
television. Simply the given
extension will be used to plug in
a device and to watch a movie.

The same way, a class should be
open for extension but closed for
modification by the client.

Liskov Substitution Principle
Every subclass/derived class should be substitutable for their base/parent class.

According to Liskov’s principle if you have a parent class with its child class, the child class
should inherit the functions none other than the exact same of its parent class.

Assume there’s a toy cat class that inherits the same animal class given below. The toy cat
will do nothing other than making sound. But if you’re following the Liskov Substitution
Principle, since child class should be substitutable for their parent class the toy cat class
should be in a different hierarchy, and not in the Animal class as the toy cat will get the drink
functionality if it is in the Animal class, which is a function that a toy cannot perform in the
real world.

Abstraction
Through the process of abstraction, a programmer hides all but
the relevant data about an object in order to reduce complexity
and increase efficiency.

• Can you think about the instance of a vehicle?
o Cannot be instantiated
o Can only be used through inheritance

SOLID Principles
It is the acronym for five design principles intended to make software designs more
understandable, flexible and maintainable.

Single responsibility principle
Assume there is a VGA port and a USB port.
Since they are independent from each other
it’s easy to do modifications. If they were in
the same port when a modification occurs
such as the replacement of VGA with a HDMI
port, the complete port should be changed.

In the same way if one class handles multiple
responsibilities the whole class has to be
changed in case of a modification. A class
should have one and only one reason to
change, meaning that a class should have only
one job.

Page | 29

Interface segregation principle
A client should never be forced to implement an interface that it doesn't use, or clients
shouldn't be forced to depend on methods they do not use.

Given below is a VGA port integrated with a USB port. For the use of a USB port if someone
implements it together with a VGA port also in it, while using the USB port, the VGA port
will	do	nothing.	No	use	of	implementing	it	integrated	together.

 Just the same way, assume in an Animal class
you have eat, make sound and fly as attributes.
For a sub class of it - ‘bird class’, it will be fine.
But for a sub class - ‘dog class’ the fly attribute
is not suitable.

In this kind of a scenario instead of a single
interface you can have two separate interfaces
named eatable and flyable. If the Animal is a

bird you can implement eatable and flyable. And if it is a dog you can implement only the
eatable interface.

Dependency inversion principle

Entities must depend on abstractions not on concretions.
It states that the high-level module must not depend on
the low-level module, but they should depend on
abstractions.

Assume that there’s a message sender class which sends
messages in multiple forms (SMS, e-Mail etc.) If you
hardcode the values of SMS or e-Mails to the message
sender class, in occurrence of a new message sending
form you should be able to add that as well. But that
makes the high-level module dependent on the low-level
one.

Page | 30

Can you identify the mistakes in each code segment?

Case Study
There is a school which is managed by a principal. In that school there are students who are
in different grades (Grade 1 to 13). Each grade has multiple class rooms. In each class room
students learn subjects, and subjects are taught by teachers. A teacher can be a head of a
particular class.

You	have	to	write	a	software	for	the	school. From your software a parent can view the
information about the teacher who teaches a particular subject	to	his/her	child.	Your	task	is	to	
identify the classes (and attributes) in terms of OOP.

01 02

03

04

Interface segregation principle
A client should never be forced to implement an interface that it doesn't use, or clients
shouldn't be forced to depend on methods they do not use.

Given below is a VGA port integrated with a USB port. For the use of a USB port if someone
implements it together with a VGA port also in it, while using the USB port, the VGA port
will	do	nothing.	No	use	of	implementing	it	integrated	together.

 Just the same way, assume in an Animal class
you have eat, make sound and fly as attributes.
For a sub class of it - ‘bird class’, it will be fine.
But for a sub class - ‘dog class’ the fly attribute
is not suitable.

In this kind of a scenario instead of a single
interface you can have two separate interfaces
named eatable and flyable. If the Animal is a

bird you can implement eatable and flyable. And if it is a dog you can implement only the
eatable interface.

Dependency inversion principle

Entities must depend on abstractions not on concretions.
It states that the high-level module must not depend on
the low-level module, but they should depend on
abstractions.

Assume that there’s a message sender class which sends
messages in multiple forms (SMS, e-Mail etc.) If you
hardcode the values of SMS or e-Mails to the message
sender class, in occurrence of a new message sending
form you should be able to add that as well. But that
makes the high-level module dependent on the low-level
one.

Page | 31

5.0 What is a Unit?
What is the smallest unit in the society?
Family is the smallest unit of the society. You	cannot	break	it down in it to any other smaller
unit. It cannot be an individual person. But why? To make a unit, there should be a team.

Unit is the smallest entity in programming which you cannot break any further. If you break a
unit, it will not be a unit there after.

Is coupling good for the society?
For an individual person coupling might be good. But in society if one family depends on
some other family, that kind of couplings are unacceptable.

In software, coupling is a measure of how closely connected two modules are. High coupling
is bad in software as well. But how?

Assume your family has a family doctor. Whenever any of your family members gets sick
you will visit none other than your family doctor. Think of an emergency where your family
doctor is unavailable… since your family is tightly coupled to your family doctor the patient
will be at risk due to the doctor’s unavailability.

This would have not happened if the family used to take medicine from a general doctor than
being tightly bound to one specific doctor.

The same way if one unit is tightly coupled with another, and if one unit is affected, the
coupled unit will also be affected heavily.

Image Source -http://www.guibingzhuche.com/group/cartoon-pictures-of-families/

Image Source - https://www.pinterest.com/pin/453808099935067891/

Page | 32

How to reduce coupling?
In order to reduce the inappropriate coupling, you have to increase Cohesion.

If your current class is coupled to another class, in case of a modification or adding a new
feature to the current class, the other coupled class also gets affected.

Cohesion is about making sure each component does one thing and does it well. By
increasing the cohesion, you make one component have little or no interaction with other
components in the system. This leads to minimal or zero impact between classes in case of a
modification.

Importance of a unit
“If we have stronger families we will have stronger schools and stronger communities with
less poverty and less crime.” (William Bennett, a former United States secretary of
education)

“If we have stronger Units we will have stronger Modules and stronger Software with Rich
Features and less Bugs.”

Chamil Jeewantha, an Architect @ Zone24x7

What is Unit?
• A single, indivisible entity
• The smallest testable part of an application. The smallest unit will depend on the user.

Ex: -
o For an End User -> Entire software might be the smallest unit.
o QA Engineer -> Single Functionality
o Architect -> A Module, Component
o Developer -> A Class (on OOP)

Class? Why not Method (OOP)?
If a class follows the “Single Responsibility Principle” (one class should do only one thing
[doesn’t mean one function]) & the methods are cohesive (within one single class all the
methods should be tightly interrelated) then it’s really hard to use a method independently.

Example of a Unit
public class AndCriteria implements Criteria {

private final Criteria criteria1;
private final Criteria criteria2;

 public AndCriteria(Criteria criteria1, Criteria criteria2) {
this.criteria1 = criteria1;
this.criteria2 = criteria2;

 }
 public List filter (List values) {

List filteredList = criteria1.filter(values);
return criteria2.filter(filteredList);

}
}

5.0 What is a Unit?
What is the smallest unit in the society?
Family is the smallest unit of the society. You	cannot	break	it down in it to any other smaller
unit. It cannot be an individual person. But why? To make a unit, there should be a team.

Unit is the smallest entity in programming which you cannot break any further. If you break a
unit, it will not be a unit there after.

Is coupling good for the society?
For an individual person coupling might be good. But in society if one family depends on
some other family, that kind of couplings are unacceptable.

In software, coupling is a measure of how closely connected two modules are. High coupling
is bad in software as well. But how?

Assume your family has a family doctor. Whenever any of your family members gets sick
you will visit none other than your family doctor. Think of an emergency where your family
doctor is unavailable… since your family is tightly coupled to your family doctor the patient
will be at risk due to the doctor’s unavailability.

This would have not happened if the family used to take medicine from a general doctor than
being tightly bound to one specific doctor.

The same way if one unit is tightly coupled with another, and if one unit is affected, the
coupled unit will also be affected heavily.

Image Source -http://www.guibingzhuche.com/group/cartoon-pictures-of-families/

Image Source - https://www.pinterest.com/pin/453808099935067891/

Page | 33

In the above example, public class AndCriteria implements Criteria class. The AndCriteria
has two criteria’s underneath. Any given list will be filtered through criteria1 and the same
list’s output will be filtered through criteria2, and the filteredList will be returned.

For this same example we can set another AndCritera as critera1 or new criteria named
OrCriteria, or a new class called male_gender_filtered_criteria. With its high cohesion this
example becomes a good unit which allows to do any amendments without affecting other
classes.

Characteristics of a Good Unit

• Not	 so	 lengthy	 – if you have lengthy codes, there’s a high probability that you’re
doing multiple things/ more things than what is expected.

• Self-explained – no need of comments to explain what the code does. Just by looking
at the code, it explains its self to the reader.

• Used by its clients via an interface – loose	coupling.	No	one	directly	uses its class,
therefore anytime the class can be removed, and another class can be plugged in.

• SOLID
• Well Tested – whole class must be unit tested for all possible scenarios.
• Compliant with Best Practices (All above + many more)

Common Problems related to Unit
• Too generic names – self unexplained names like…

Manager
Service
Utility

• Unwanted explanations; a generalized class which doesn’t have a special name... Ex: -

Bottle bottle = new WaterBottle();
bottle.fill();
Holder holder = new WaterHolder()
holder.fill()

• Law of Demeter

Principle of Least Knowledge – you shouldn’t get tightly coupled with the
implementation of a particular class’s inner	classes.	You	should know about the least
possible things of the class that you’re working on.

Ex: - man.getBody().getHand().up()

Page | 34

• Many Classes - the classes are transparent, well categorized.

• All in One – one single class for all the work, but if you want to find something this
module will put you in trouble for sure.

• Not	 Tested	 Separately – since people are not creating proper units, they don’t do
proper unit tests. Once you start implementing you should start unit testing as well. In
that way at the end all your unit tests will be completed.

Image Source - https://www.dcig.com/2008/06/datacenter-management-101-part-i-cable-manage.html

In the above example, public class AndCriteria implements Criteria class. The AndCriteria
has two criteria’s underneath. Any given list will be filtered through criteria1 and the same
list’s output will be filtered through criteria2, and the filteredList will be returned.

For this same example we can set another AndCritera as critera1 or new criteria named
OrCriteria, or a new class called male_gender_filtered_criteria. With its high cohesion this
example becomes a good unit which allows to do any amendments without affecting other
classes.

Characteristics of a Good Unit

• Not	 so	 lengthy	 – if you have lengthy codes, there’s a high probability that you’re
doing multiple things/ more things than what is expected.

• Self-explained – no need of comments to explain what the code does. Just by looking
at the code, it explains its self to the reader.

• Used by its clients via an interface – loose	coupling.	No	one	directly	uses its class,
therefore anytime the class can be removed, and another class can be plugged in.

• SOLID
• Well Tested – whole class must be unit tested for all possible scenarios.
• Compliant with Best Practices (All above + many more)

Common Problems related to Unit
• Too generic names – self unexplained names like…

Manager
Service
Utility

• Unwanted explanations; a generalized class which doesn’t have a special name... Ex: -

Bottle bottle = new WaterBottle();
bottle.fill();
Holder holder = new WaterHolder()
holder.fill()

• Law of Demeter

Principle of Least Knowledge – you shouldn’t get tightly coupled with the
implementation of a particular class’s inner	classes.	You	should know about the least
possible things of the class that you’re working on.

Ex: - man.getBody().getHand().up()

Page | 35

Given below is a list of students in a tuition class. Using the given records create a student
class list. All the records must be included in the student class.

Number Name Age Gender Class
1 Nikini 19 Female 13
2 Piyumal 15 Male 9
3 Sanduni 17 Female 11
4 Chathurika 18 Female 12
5 Nirmal 19 Male 13
6 Sahan 16 Male 10
7 Madhawa 14 Male 8
8 Tharindu 18 Male 12
9 Sachini 16 Female 10
10 Shehani 15 Female 9

1) Write the code to find all male students.
2) Find all the female students older than 18 years.
3) Find male students who are older than 18 or female students who are younger than 18

years.

Exercise:-

Page | 36

6.0 What is a Unit Test?
• Select the smallest piece of testable software in the application
• Isolate it from the rest of the code
• Determine whether it behaves exactly as you expect
• Each unit is tested separately before integrating them into modules to test the

interfaces between modules

Characteristics of a Good Unit Test
• Automated
• Thorough
• Repeatable
• Independent

o Test only one thing
o Should not rely on each other

• Fast
• Professional (Readable, Maintainable, Trustworthy)

Isolating A Unit for Testing
The main aim of isolating each unit of the system is to identify, analyze and fix the defects.

Given below is a real-world scenario of how to isolate a unit for testing.

Assume there’s a building to be
constructed. The building owner
needs to assign a trustworthy site
manager to construct the building.

To verify something, the 1st thing is
to have a controlled environment. In
a controlled environment, nothing
will change except the facts that are
changed by the controller itself

Only if the environment is under control can we test for a particular thing in that
environment. Therefore, to make a controlled environment the best option is to create
dummies.

To verify whether the site manager works as expected the owner names a specific hardware
and instructs the site manager to buy cement from that shop for any cement needs of the
building.

Given below is a list of students in a tuition class. Using the given records create a student
class list. All the records must be included in the student class.

Number Name Age Gender Class
1 Nikini 19 Female 13
2 Piyumal 15 Male 9
3 Sanduni 17 Female 11
4 Chathurika 18 Female 12
5 Nirmal 19 Male 13
6 Sahan 16 Male 10
7 Madhawa 14 Male 8
8 Tharindu 18 Male 12
9 Sachini 16 Female 10
10 Shehani 15 Female 9

1) Write the code to find all male students.
2) Find all the female students older than 18 years.
3) Find male students who are older than 18 or female students who are younger than 18

years.

Exercise:-

Page | 37

Test Flow

How to Test 1.0
• Create a dummy bag of cement
• Create a dummy hardware shop
• Instruct the dummy hardware to send the dummy bag of cement if somebody asks for

a bag of cement.
• Give the address of the dummy hardware to the site manager.
• Ask for a bag of cement from the site manager
• Verify whether he has called the given hardware
• Verify whether we receive the dummy cement bag back.

How to Test 1.1
Creating dummy thing means creating a mock. If you want bag of cement mock what you
should do is simply create an instance of dummy cement.

BagOfCement dummyCement = mock(BagOfCement.class);
//mock of bag of cement is provided
HwShop dummyHw = mock(HwShop.class);
// mock of hardware shop is created
When(dummyHw.buyCement()).thenReturn(dummyCement);
 //When dummyHardware.buyCement is called, then return dummy cement
siteManager.setHwShop(dummyHw);
//Finally, the siteManager is set for the dummyHardware

BagOfCement output = siteManager.askCement();
//Site manager buy a cement bag

assertThat(output, is(dummyCement));
verify(dummyHw).buyCement();
//verification of dummyHardware buyCement is called

By the above example it is visible that there is no dependency of other classes. Developer
depends only on the interfaces. Developer is simply mocking them and getting the job done.

To test this scenario, two mocks can be created. One mock for criteria 1 and another one for
criteria 2. For criteria 1, when the mock list one is given it should return mock list 2 if
somebody calls the filter method in mock list 1. If developer provides mock list 2, then it
should return mock list 3. That is the expectation.

Page | 38

The expectation of AndCriteria is, whatever the value given should be go through criteria 1.
Whatever the output of criteria 1 should go through criteria 2, and whatever the output of
criteria two should be returned to the developer. If it happens the AndCriteria works.

How to Test 1.2
public class AndCriteria implements Criteria{

private final Criteria criteria1;
private final Criteria criteria2;

public AndCriteria(Criteria criteria1, Criteria criteria2) {

this.criteria1 = criteria1;
this.criteria2 = criteria2;

}
public List filter(List values) {

List filteredList = criteria1.filter(values);
return criteria2.filter(filteredList);
}

}

Example: Requirement of AndCriteria

• The AndCriteria should be an implementation of Criteria
• Should filter a given list by first expression and return a filteredList
• Should filter the filteredList by the second expression and return the finalist

Example: Tests for AndCriteria
1.Should_FilterThrough1StAnd2ndExpressions_When_AListIs Given

2.Should_ThrowException_When_NullIsProvided

Example: AndCriteria : Test 1
@Test
public void
Should_FilterThrough1StAnd2ndExpressions_When_AListIsGiven(){

List input = // dummy list
List lst1 = // dummy list
List lst2 = // dummy list

Criteria expr1 = // dummy criteria -> filter(input) returns dummy list (lst1)
Criteria expr2 = // dummy criteria -> filter(lst1) returns dummy list (lst2)

AndCriteria criteria = new AndCriteria(expr1, expr2);
List output = criteria.filter(input);
assertThat(output, is(lst2));

}

Test Flow

How to Test 1.0
• Create a dummy bag of cement
• Create a dummy hardware shop
• Instruct the dummy hardware to send the dummy bag of cement if somebody asks for

a bag of cement.
• Give the address of the dummy hardware to the site manager.
• Ask for a bag of cement from the site manager
• Verify whether he has called the given hardware
• Verify whether we receive the dummy cement bag back.

How to Test 1.1
Creating dummy thing means creating a mock. If you want bag of cement mock what you
should do is simply create an instance of dummy cement.

BagOfCement dummyCement = mock(BagOfCement.class);
//mock of bag of cement is provided
HwShop dummyHw = mock(HwShop.class);
// mock of hardware shop is created
When(dummyHw.buyCement()).thenReturn(dummyCement);
 //When dummyHardware.buyCement is called, then return dummy cement
siteManager.setHwShop(dummyHw);
//Finally, the siteManager is set for the dummyHardware

BagOfCement output = siteManager.askCement();
//Site manager buy a cement bag

assertThat(output, is(dummyCement));
verify(dummyHw).buyCement();
//verification of dummyHardware buyCement is called

By the above example it is visible that there is no dependency of other classes. Developer
depends only on the interfaces. Developer is simply mocking them and getting the job done.

To test this scenario, two mocks can be created. One mock for criteria 1 and another one for
criteria 2. For criteria 1, when the mock list one is given it should return mock list 2 if
somebody calls the filter method in mock list 1. If developer provides mock list 2, then it
should return mock list 3. That is the expectation.

Page | 39

Unit testing gets harder only when you have dependencies on other classes. For example,
within your class if you are referring directly to another method in a different class, the ease
of unit testing won’t be there. If you’re referring to another static method in another utility
class, you’ll never get through unit tests because you cannot mock them as they are hard
bounded. You cannot easily replace them with mocks…

A class that works with dummies will work with anything. It is that much reusable,
collaborative…high cohesive with the other classes. All this luxury is there because it is
testable. In Quality Code, if you write a class that is testable independently, that means that
class will automatically achieve all the good quality facts of Quality Code.

Example: AndCriteria : Test 2
@Test (expected = IllegalArgumentException.class)
public void Should_ThrowException_When_NullIsProvided() {

List input = null
AndCriteria criteria = new AndCriteria(expr1, expr2);
criteria.filter(input);

}

Example 2: Evaluate Expression

• The user should provide an expression with relevant value mappings to its variables.
o Java Evaluate ((a+b)*3)-2 a=5 b=8

• The program should assign a & b values to this expression and evaluate it.

Code for Evaluating an Expression

class Evaluate{
public static void main(String[] args){

String expr = ... // assign variables with values
// evaluate the expr

double value = // the output value of the evaluation
System.out.println(value);
}

}

Page | 40

Common Complaints About Unit Testing
• Deadline is near, no time to write tests
• Writing tests takes longer than the production code
• Hard to keep the test suite up to date
• One line of code change breaks 100s of tests

Solution
Test First Development (TFD)?

Rules: TFD
1.Write a (another) unit test that fails

2.Write the minimum production code until all the tests pass

3.Repeat until all your work is done.

Test First Benefits (Vs Test Late)
All the benefits of Unit testing

+

• Write non-testable codes are impossible
• Test-first forces you to plan before you code
• It’s faster than writing code without tests
• It saves you from lengthy code
• It guides you to build good, SOLID units
• It increases your confidence (refactor without fear)
• Acts as a real-time progress bar

Unit testing gets harder only when you have dependencies on other classes. For example,
within your class if you are referring directly to another method in a different class, the ease
of unit testing won’t be there. If you’re referring to another static method in another utility
class, you’ll never get through unit tests because you cannot mock them as they are hard
bounded. You cannot easily replace them with mocks…

A class that works with dummies will work with anything. It is that much reusable,
collaborative…high cohesive with the other classes. All this luxury is there because it is
testable. In Quality Code, if you write a class that is testable independently, that means that
class will automatically achieve all the good quality facts of Quality Code.

Example: AndCriteria : Test 2
@Test (expected = IllegalArgumentException.class)
public void Should_ThrowException_When_NullIsProvided() {

List input = null
AndCriteria criteria = new AndCriteria(expr1, expr2);
criteria.filter(input);

}

Example 2: Evaluate Expression

• The user should provide an expression with relevant value mappings to its variables.
o Java Evaluate ((a+b)*3)-2 a=5 b=8

• The program should assign a & b values to this expression and evaluate it.

Code for Evaluating an Expression

class Evaluate{
public static void main(String[] args){

String expr = ... // assign variables with values
// evaluate the expr

double value = // the output value of the evaluation
System.out.println(value);
}

}

Page | 41

What is TDD?
TDD = TFD + Refactoring

• TDD = Test Driven Development
• TFD = Test First Development

Rules: TDD
1.Write a(nother) unit test that fails

2.Write the minimum production code until
all the tests pass

3.Refactor your code

4.Repeat until all your work is done

Tools with TDD
• IDE (IntelliJ)
• Test Runner (Junit)
• Mock libraries (Mockito)
• Verification (Hamcrest)

ATDD vs TDD
• TDD to drive the design
• ATDD to make sure all the requirements are

implemented

Additional time due to TDD?
• Beginner

o Lots of time thinking where to start
• Experienced Developer

o Initially 15 - 17% more
• Big time saving later for both

Page | 42

7.0 Writing Quality Code
Anybody can write working code…what is hard is to write a maintainable code! But why
maintainable code is important?

Why Maintainability
• If code is not written well

o It might work well
o However, it is not maintainable

▪ Difficult to fix defects
▪ Difficult to change
▪ Difficult to add new features

When the code is difficult to understand, it is hard to change…

In a software product, the initial development cost is a little high. But when compared to long
term use of it the cost is negligible. Since these software products are being used for a while
(few years or more), if the initial development hasn’t been done properly;

• From a client’s perspective, bad code would result in
o Higher maintenance cost
o Cannot be changed with the changing business needs
o Most applications have to be re-written after some time, due to bad code

• From a developer’s perspective, bad code would make them
o Less productive
o Frustrated, by having to do deal with a complex mess everyday

Therefore, it is important to write quality code from the very beginning. So that both parties
would benefit without hassle.

What makes the code maintainable
• Simple - If the code is not simple, it’s not maintainable. Skilled coders write simple

code, not complex code.
• Readable
• Easy to Change
• Has good diagnostic infrastructure
• Has good Unit Test coverage

What makes the code simple
People tempt to write over complex code including all the different technologies that they’ve
learned assuming that it’s the best. Then what makes it simple…?

• Keep it simple and stupid (KISS)
o Best code is not the shortest code
o Best code is not the highest performant code

(pre-mature performance optimizations may have negative impact on both
performance and maintainability)

o Best code is the code that anybody can understand easily.

What is TDD?
TDD = TFD + Refactoring

• TDD = Test Driven Development
• TFD = Test First Development

Rules: TDD
1.Write a(nother) unit test that fails

2.Write the minimum production code until
all the tests pass

3.Refactor your code

4.Repeat until all your work is done

Tools with TDD
• IDE (IntelliJ)
• Test Runner (Junit)
• Mock libraries (Mockito)
• Verification (Hamcrest)

ATDD vs TDD
• TDD to drive the design
• ATDD to make sure all the requirements are

implemented

Additional time due to TDD?
• Beginner

o Lots of time thinking where to start
• Experienced Developer

o Initially 15 - 17% more
• Big time saving later for both

Page | 43

Many people try to implement all possible future requirements and write code or do a design
to cater to all of them. But most of the time the future expected requirements may never arise.
So, the best thing is not to design something that is not known, which you think it will come
as	future	requirements.	You	will	add	unwanted	complexity	to	your	code	by	that.

• You Aren’t Going to Need	It	(YANGI)
o Don’t add complexity to cater for future requirements
o Don’t use design patterns just to cater for unseen future requirements or for

the sake of using them

Even though you write simple code if it is not in a readable format people still find it hard to
maintain. Even if it is a simple few lines of code that is not readable, it will make issues in
maintainability.

What makes the code Readable
• Use meaningful names

• Follow consistent naming convention

• Use small and simple methods

• Properly format the code

• Add proper code comments

• Separate different concerns into deferent classes

Use meaningful names
Code should speak for its self. Without looking at the comments, simply going through the
code, people should be able to understand the code. Therefore, always use meaningful
variables.

• Class names, method names and variable names should be meaningful, so that the
code can describe itself without the need of comments

• Method names should correctly represent exactly what the method does (no more, no
less) Ex: -

o Never call a method ‘getOrder’, if it creates a new order if one does not exist.
Because it should only say what it does.

• Class and variable names should correctly represent exactly what the class, variable
represents

o Never	use	variable	names	such	as	x,	y,	i,	j,	obj,	emp1,	emp2,	etc.
• Use nouns to name classes and variables (e.g. class – Order, variable – order)
• Use	verbs	to	name	methods	(e.g.	getName,	setAddress,	save,	createEmployee,	etc.)

Page | 44

Follow a consistent naming convention
Within the application also, make sure to follow a consistent naming convention.

• Use consistent verbs to create method names

o A method with ‘get’ prefix should never alter the state and should always
return a value

o A method with ‘set’ prefix should always modify the state and should never
return a value

o Never	use	different	prefixes	to	represent	the	same	action	

(e.g. never use the below methods to indicate that some entity is inserted to the
database within the same application)

• insertOrder, createInvoice, saveEmployee, addCatalogItem

• Never	 use	 two	 words	 to	 mean	 the	 same	 thing	 (same	 concept)	 within	 the	 same	
application

• Never	use the same word to mean multiple things within the same application

How to make methods looks simple
Method should look simple for it to be readable. Though the content is simple if you write it
in a bad way it will look complex.

• Remove nested conditions

• Remove control flags

• Introduce descripting local variables

• Split temporary variables

• Break long methods into smaller methods

Many people try to implement all possible future requirements and write code or do a design
to cater to all of them. But most of the time the future expected requirements may never arise.
So, the best thing is not to design something that is not known, which you think it will come
as	future	requirements.	You	will	add	unwanted	complexity	to	your	code	by	that.

• You Aren’t Going to Need	It	(YANGI)
o Don’t add complexity to cater for future requirements
o Don’t use design patterns just to cater for unseen future requirements or for

the sake of using them

Even though you write simple code if it is not in a readable format people still find it hard to
maintain. Even if it is a simple few lines of code that is not readable, it will make issues in
maintainability.

What makes the code Readable
• Use meaningful names

• Follow consistent naming convention

• Use small and simple methods

• Properly format the code

• Add proper code comments

• Separate different concerns into deferent classes

Use meaningful names
Code should speak for its self. Without looking at the comments, simply going through the
code, people should be able to understand the code. Therefore, always use meaningful
variables.

• Class names, method names and variable names should be meaningful, so that the
code can describe itself without the need of comments

• Method names should correctly represent exactly what the method does (no more, no
less) Ex: -

o Never call a method ‘getOrder’, if it creates a new order if one does not exist.
Because it should only say what it does.

• Class and variable names should correctly represent exactly what the class, variable
represents

o Never	use	variable	names	such	as	x,	y,	i,	j,	obj,	emp1,	emp2,	etc.
• Use nouns to name classes and variables (e.g. class – Order, variable – order)
• Use	verbs	to	name	methods	(e.g.	getName,	setAddress,	save,	createEmployee,	etc.)

Page | 45

Simple Methods- Remove	Nested	Conditions
• A method with nested conditions

The objective of the below method is that somebody passes the call information. And you are
supposed to calculate the call charges.

What the code does is simple. But the look of it...?! It is better if you can understand the code
just by a looking at it. You’ll have to spend a considerable amount of cognitive cover just to
understand this very simple code. Whereas in the second example it is just a matter of a
simple glance that is needed to understand the code.

Simple Methods- Remove	Nested	Conditions
• A method with guard clause

Given below is the same previous concept that calculates the call charge. The main difference
in this code is that with a single glance at it you will be able to understand the complete
requirement.

Page | 46

The best practice is to do your validations first, then handle the special cases and handle the
normal/ general cases at the end. Having multiple return values isn’t that bad in
programming. Because it can help you to reduce the complexity of your code.

Another programming tactic is to avoid control flags. With lots of control flags you are
adding additional complexity to the code.

Simple Methods - Remove Control Flags
• A method with control flags

• A method with no control flags

Simple Methods- Remove	Nested	Conditions
• A method with nested conditions

The objective of the below method is that somebody passes the call information. And you are
supposed to calculate the call charges.

What the code does is simple. But the look of it...?! It is better if you can understand the code
just by a looking at it. You’ll have to spend a considerable amount of cognitive cover just to
understand this very simple code. Whereas in the second example it is just a matter of a
simple glance that is needed to understand the code.

Simple Methods- Remove	Nested	Conditions
• A method with guard clause

Given below is the same previous concept that calculates the call charge. The main difference
in this code is that with a single glance at it you will be able to understand the complete
requirement.

Page | 47

Simple Methods - Descripting local variables
Given below is a code that calculates the area of a triangle. First example uses one single line
to calculate the total area where the second example calculates the area in a descriptive
manner.

In coding, simple doesn’t mean the shortest code. By trying to make the shortest code there’s
a high possibility that you will end up with a complex code.

• A lengthy expression

double totalArea = triangle.width * triangle.height / 2 + rectangle.width * ractangle.height;

• After descriptive variables are introduced

double areaOfTriangle = triangle.width * triangle.height / 2;
double areaOfRectangle = rectangle.width * ractangle.height;
double totalArea = areaOfRectangle + areaOfRectangle;

Simple Methods - Split Temp Variables
Another best practice is never trying to reuse the variables to do multiple things.

• Code that reuses the same variable to represent two logical concepts

E.g. Area of triangle & area of rectangle

double totalArea = 0;
double area = triangle.width * triangle.height / 2;
double totalArea += area;
double area = rectangle.width * ractangle.height;
double totalArea += area;

• Code after the temp variable is split

double areaOfTriangle = triangle.width * triangle.height / 2;
double areaOfRectangle = rectangle.width * ractangle.height;
double totalArea = areaOfRectangle + areaOfRectangle;

Break long methods into small methods
Last but not least, if there are very long methods, then also it is very difficult to understand.

• Number	 of	 lines	 in	 a	 method	 should not exceed the number of lines that can be
viewed using your IDE

• If a method is too long or too complex, break it into smaller methods by extracting a
set of small private methods with the same abstraction level

• The initial method should represent the high-level algorithm as a story
• Subsequent methods should represent the detailed implementation

Page | 48

Given below is another example, which is implemented to do a withdrawal from a bank
account. Though it’s a very simple thing, the code looks very complex.

Ex 1: -

• If it is hard to break a method, since its internal logic is tightly coupled through lots of
local variables,

o Extract the method into a separate class
o Convert local variables that cause coupling into member variables of that class
o Break the method (extract private methods that are at the same level of

abstraction)

Simple Methods - Descripting local variables
Given below is a code that calculates the area of a triangle. First example uses one single line
to calculate the total area where the second example calculates the area in a descriptive
manner.

In coding, simple doesn’t mean the shortest code. By trying to make the shortest code there’s
a high possibility that you will end up with a complex code.

• A lengthy expression

double totalArea = triangle.width * triangle.height / 2 + rectangle.width * ractangle.height;

• After descriptive variables are introduced

double areaOfTriangle = triangle.width * triangle.height / 2;
double areaOfRectangle = rectangle.width * ractangle.height;
double totalArea = areaOfRectangle + areaOfRectangle;

Simple Methods - Split Temp Variables
Another best practice is never trying to reuse the variables to do multiple things.

• Code that reuses the same variable to represent two logical concepts

E.g. Area of triangle & area of rectangle

double totalArea = 0;
double area = triangle.width * triangle.height / 2;
double totalArea += area;
double area = rectangle.width * ractangle.height;
double totalArea += area;

• Code after the temp variable is split

double areaOfTriangle = triangle.width * triangle.height / 2;
double areaOfRectangle = rectangle.width * ractangle.height;
double totalArea = areaOfRectangle + areaOfRectangle;

Break long methods into small methods
Last but not least, if there are very long methods, then also it is very difficult to understand.

• Number	 of	 lines	 in	 a	 method	 should not exceed the number of lines that can be
viewed using your IDE

• If a method is too long or too complex, break it into smaller methods by extracting a
set of small private methods with the same abstraction level

• The initial method should represent the high-level algorithm as a story
• Subsequent methods should represent the detailed implementation

Page | 49

Given below is the same example in a different approach. Methods are simple,
and by one look you can simply understand what it does. That is because the
complexities of the multiple steps are now hidden inside implementation details,
hidden inside private methods. Therefore, the public method can be read as simple as
reading English…

Ex	2:	-	

public TransactionReponse Withdraw(string accountNo, decimal amount, int userId)

{
var account = GetAccount(accountNo);
if (account.Balance >= amount)
{

AddTransaction(account, -amount, userId);
return new TransactionReponse(TransactionStatus.Completed);

}
else
{

ProcessAsOD(accountNo, amount, userId);
}

}

Here shows the description of each method. This is how you process the order. Here again
you check the strategy

Ex	3:	-	

private TransactionReponse ProcessAsOD(string accountNo, decimal amount, int userId)
{
 var odStratergy = GetODStratergy(account.AccountType);

if (odStratergy.CanIssueOD(account))
{

decimal preApprovedCreditLimit =
odStratergy.GetPreApprovedCreditLimit(account);
if (preApprovedCreditLimit < amount)
{

RecodeOD(account, amount, userId);
AddTransaction(account, -amount, userId);
return new TransactionReponse(TransactionStatus.Completed);

}
}
return new TransactionReponse(TransactionStatus.Rejected,
StringResources.InsufficientFunds);

}

Page | 50

public, and you should be able to read it like an English story. That much of clarity should be
there	 followed	by	detailed	explanations	of	 each	 high-level	 step	 that	describes	 the	 top	 level	
public method.

Sometimes this can also be a bit challenging if you have lots of local variables that are being
reused. That’s where the solution ‘break methods’ comes in. In reality that is also something
doubtful if you’re unaware of the tactics of properly breaking the method.

Break	Methods	-	Use methods objects
Use method objects to break complex methods that are tightly coupled through local
variables

See the below example

public void ComplexMethod()
{
 //Load Data
 var initialData = LoadInitialData();
 var secondaryData = LoadSecondaryData(initialData);
 //Validate secondry data
 //...
 int totalProp1 = 0;
 int averageProp2 = 0;
 int minProp3 = 0;
 foreach (var item in secondaryData)
 {
 //calculate summary
 //...
 }
 //calculate return value using summary result
 //... res = some expression of totalProp1, averageProp2 and minProp3
 return res;
}

In the above example values are assigned to each variable. Without these variables, you can’t
do the calculations. If you try to break it, you may have to pass about ten variables to every
method. And then again if you have to change the values of the variable it is even harder.
How to solve this…? Use methods objects

Break	Methods	-	Use methods objects

Create a separate method that represents the complex section, or in other words a class that
represents that complex method. When the object represents your method all your local
variables of that method becomes member variable of your class.

Best practice in the normal situations is never to make local variables as member variables.
But when your method becomes a class it is legal to write local variables as member
variables. You don’t have to pass lots of variables and you can always change that. So, the
lifetime of that object will be only limited to execution of that single operation.

The guideline is all the public methods should be easy to read and it should reveal the high-
level algorithm of the method. High level algorithm should never be hidden. It should be

Given below is the same example in a different approach. Methods are simple,
and by one look you can simply understand what it does. That is because the
complexities of the multiple steps are now hidden inside implementation details,
hidden inside private methods. Therefore, the public method can be read as simple as
reading English…

Ex	2:	-	

public TransactionReponse Withdraw(string accountNo, decimal amount, int userId)

{
var account = GetAccount(accountNo);
if (account.Balance >= amount)
{

AddTransaction(account, -amount, userId);
return new TransactionReponse(TransactionStatus.Completed);

}
else
{

ProcessAsOD(accountNo, amount, userId);
}

}

Here shows the description of each method. This is how you process the order. Here again
you check the strategy

Ex	3:	-	

private TransactionReponse ProcessAsOD(string accountNo, decimal amount, int userId)
{
 var odStratergy = GetODStratergy(account.AccountType);

if (odStratergy.CanIssueOD(account))
{

decimal preApprovedCreditLimit =
odStratergy.GetPreApprovedCreditLimit(account);
if (preApprovedCreditLimit < amount)
{

RecodeOD(account, amount, userId);
AddTransaction(account, -amount, userId);
return new TransactionReponse(TransactionStatus.Completed);

}
}
return new TransactionReponse(TransactionStatus.Rejected,
StringResources.InsufficientFunds);

}

Page | 51

private class ComplexMethod
{
 public IList<int> InitialData { get; set; }
 public IList<MyEntity> SecondaryData { get; set; }
 public decimal TotalProp1 { get; set; }
 public decimal AverageProp2 { get; set; }
 public decimal MinProp3 { get; set; }
 public decimal ComplexMethod3()
 {
 LoadData();
 Validate();
 CaclulateSummeries();
 return CalculateResult(parameters);
 }
 //Private methods comes here

Properly Format the Code
• Vertical Formatting

o Let the users to read a class in summary and details format
▪ Keep constants and member variables of the class at the top to make

them easy to find
▪ Public	 interface	 methods	 that	 describe	 the	 high-level	 flows

(algorithms) of the actions that need to come next
▪ Private methods with low level implementation details should follow

• Higher the density of information in the screen, higher the readability
o Reduce the number of empty lines
o Never	add	unnecessary	comments

• Horizontal Formatting
o Break the statements into multiple lines if they are too long to be seen in a

single screen in your IDE
o Break the statements in logical places so that the readability of the code is not

impacted

Add Proper Comments
• Say	WHY,	Not	WHAT

o What	 is	 being	 done	 is	 visible	 from	 the	 code	 (proper	 code	 should	 be	 self-
explanatory without comments)

o Use comments to say why you did it in that way, when it is not very obvious
• Below are the valid exceptions to the above rule

o Add comments as warnings to other programmers on the consequences of
possible changes that they might do in the future

o Add comments to emphasize the importance of some actions in the code,
which would otherwise look not so important

o Add comments to indicate further actions that are needed (TODO:), etc.

Ex:	-	

Page | 52

What makes the code easy to change
• One should be able to read, understand and change each code unit, module, etc.

without having to analyze the rest of the code base.

o Use small cohesive classes

o Encapsulate the implementation logic and expose only a stable interface

• There should be only one unit that needs to be changed to accommodate a single
change to the requirements

o Ensure that the application is broken into a cohesive set of classes

o Avoid	duplicate	logic	(DRY	– Don’t	Repeat	Yourself	principle)

o Avoid	hard-coded	constants

To	make	the	code	easy	to	change	-	Use	small	and	cohesive	classes	
• Create classes that does only one thing and does it completely
• Break application functionality into classes so that any functional change can be

achieved by changing a minimum number of classes
• Create classes that represent domain concepts
• Create classes to represent domain commands when there is complex logic associated

with processing them
• Always wrap all calls to external services and components in separate classes, so that

the rest of the code remains stable from the changes in external dependencies

How to encapsulate the implementation
Encapsulation has nothing to do with security. It’s all about maintainability.

• Encapsulate an implementation of an algorithm within a method
o When possible, make output of a method to only depend on its inputs
o When possible, make the output of a method to only depend on its input and

immutable state of the containing object
• Encapsulate the internal data structures and implementation logic of classes using

basic OOP features of your programming language (e.g. private and protected
keywords)

• Encapsulate the implementation details of software components using façade pattern

• Remove bad comments
o Redundant comments increase the code length and hence the readability
o Inaccurate (not properly updated) comments can be very harmful
o Commented code reduces the readability (act as Zombie code that nobody

dares to remove later)

private class ComplexMethod
{
 public IList<int> InitialData { get; set; }
 public IList<MyEntity> SecondaryData { get; set; }
 public decimal TotalProp1 { get; set; }
 public decimal AverageProp2 { get; set; }
 public decimal MinProp3 { get; set; }
 public decimal ComplexMethod3()
 {
 LoadData();
 Validate();
 CaclulateSummeries();
 return CalculateResult(parameters);
 }
 //Private methods comes here

Properly Format the Code
• Vertical Formatting

o Let the users to read a class in summary and details format
▪ Keep constants and member variables of the class at the top to make

them easy to find
▪ Public	 interface	 methods	 that	 describe	 the	 high-level	 flows

(algorithms) of the actions that need to come next
▪ Private methods with low level implementation details should follow

• Higher the density of information in the screen, higher the readability
o Reduce the number of empty lines
o Never	add	unnecessary	comments

• Horizontal Formatting
o Break the statements into multiple lines if they are too long to be seen in a

single screen in your IDE
o Break the statements in logical places so that the readability of the code is not

impacted

Add Proper Comments
• Say	WHY,	Not	WHAT

o What	 is	 being	 done	 is	 visible	 from	 the	 code	 (proper	 code	 should	 be	 self-
explanatory without comments)

o Use comments to say why you did it in that way, when it is not very obvious
• Below are the valid exceptions to the above rule

o Add comments as warnings to other programmers on the consequences of
possible changes that they might do in the future

o Add comments to emphasize the importance of some actions in the code,
which would otherwise look not so important

o Add comments to indicate further actions that are needed (TODO:), etc.

Ex:	-	

Page | 53

o Concrete implementations shared between instances of a common abstractions

• Create static helper methods to implement technical algorithms
• Share logic between entities that can be derived from a common abstraction

o Use inheritance when there is a single common shared abstraction
o Use strategy design pattern when there are multiple such common abstractions

(use composition over inheritance)
• Share high level algorithms that operate on shared abstraction

o Use polymorphism to create shared logic that can operate on common
abstraction

o Use template design pattern to share high level algorithms within an
inheritance hierarchy

Have a good Diagnostic Infrastructure
What has been learned so far is important to understand what we’re writing by looking at the
code to make it simple and maintainable. But when you deploy the code to the production
environment or the QA environment, and there are issues in those environments, a good
diagnostic infrastructure is essential. Below points are critical in such situations to figure out
what’s going on.

• Input Validation
• Exception Handling
• Logging
• Monitoring

Avoid duplicate logic
• Shared Algorithms can be classified into two types based on how they are handled

o Technical algorithms such as encryption, encoding, searching, sorting,
formatting, mathematical calculations, etc.

o High level algorithms that operate on common abstractions

Page | 54

• Ensure all values returned by all internal method calls are validated to be not null if
null values are not acceptable

• Ensure	 all	 exceptions	 that	 can	 arise	 due	 to	 invalid	 inputs	 (e.g.	 FileNotFound
exception) are handled and a friendly custom exception that explains the cause is re-
thrown

Exception Handling
• Prefer Exceptions over Error Codes
• At application or thread boundaries

o Catch all exceptions
▪ Log all exceptions
▪ Generate a meaningful message for a known exception
▪ Generate a generic message for unknown exceptions
▪ Display message to user if this is a UI application
▪ Return the error message to the client if this is a service application

• At all other places
o Catch known exceptions and re-throw custom exceptions with meaningful

messages with sufficient diagnostic details

Logging
• Look from the point of view of a person who diagnoses a problem when deciding

what to log
• Log sufficient details to diagnose problems
• Log messages do not require localization (unless requested by the client)
• Log context details (request parameters, etc.) together with exceptions whenever

possible
• Log information such as thread id, request id, session id, etc. to correlate the log

entries
• Make the log level configurable
• Ensure that no unhandled exception can go without being logged
• Always log errors even in the production environment

Input Validation
• Input validations makes the integration of libraries simple
• Proper validations help us to detect the true cause of the errors without debugging
• Ensure all input parameters are validated to be not null if null is not an acceptable

input value
o Concrete implementations shared between instances of a common abstractions

• Create static helper methods to implement technical algorithms
• Share logic between entities that can be derived from a common abstraction

o Use inheritance when there is a single common shared abstraction
o Use strategy design pattern when there are multiple such common abstractions

(use composition over inheritance)
• Share high level algorithms that operate on shared abstraction

o Use polymorphism to create shared logic that can operate on common
abstraction

o Use template design pattern to share high level algorithms within an
inheritance hierarchy

Have a good Diagnostic Infrastructure
What has been learned so far is important to understand what we’re writing by looking at the
code to make it simple and maintainable. But when you deploy the code to the production
environment or the QA environment, and there are issues in those environments, a good
diagnostic infrastructure is essential. Below points are critical in such situations to figure out
what’s going on.

• Input Validation
• Exception Handling
• Logging
• Monitoring

Avoid duplicate logic
• Shared Algorithms can be classified into two types based on how they are handled

o Technical algorithms such as encryption, encoding, searching, sorting,
formatting, mathematical calculations, etc.

o High level algorithms that operate on common abstractions

Page | 55

Exercise

Introduction:

Develop a mobile billing engine (a simple class with a method to do the bill generation E.g
GenerateBills) that can generate the monthly bill using call detail records (CDR). Assume that the
engine is provided with a list of mobile customers and a list of CDRs that contain all the details of the
calls made by these customers in the given billing month. The engine should generate bills for all the
customers. This bill should include the call charges for each of the calls made by the customer, total
call charges for the month, monthly rental, government tax, discounts (when applicable) and the final
bill amount.

A customer object includes the below details,

• Full name

• Billing address

• Phone number

• Package Code

• Registered date

A CDR includes below details,

• Phone number of the subscriber originating the call (calling party)

• Phone number receiving the call (called party)

• Starting time of the call (date and time)

• Call duration in seconds

Phone numbers are given in the below format: xxx-xxxxxxx where first 3 digits represent the
extension and the last 7 digits represent the unique phone number within that extension.

The billing is based on the package purchased by the customer, call destination (local / long distance)
and call time (peak/ off peak). The rates can be calculated per second or per minute usage.

• Local calls – calls where the originating number and the receiving number both have the same
extension

• Long distance calls – calls where the originating number and the receiving number have
different extensions

• Peak hours – 8:00 am to 8:00 pm (excluding 8:00 pm)

• Off peak hours – 8:00 pm to 8:00 am (excluding 8:00 am)

Note:	International	Direct	Dialing	(IDD)	calls	are	out	of	scope	for	this	version	of	the	invoicing	engine.

The government tax will be 20% of the total bill excluding any discounts and taxes (total call charges
+ monthly rental).

Page | 56

Step 1:

Develop a billing engine that generates the monthly bill using the rules given below.

Note:	All	figures	are	given	in	LKR

• Monthly Rental – 100

• Billing Type – Per minute

Call type Per minute charge

Peak Hours Off-peak hours

Local calls 3 2

Long distance calls 5 4

Step 2:

Let the billing charges and the billing type depend on the package. Below are the two packages that
need to be supported.

Package Monthly
Rental

Billing Type Call type Per minute charge

Peak Hours Off-peak
hours

Package A 100 Per minute Local calls 3 2

Long distance
calls

5 4

Package B 100 Per second Local calls 4 3

Long distance
calls

6 5

Exercise

Introduction:

Develop a mobile billing engine (a simple class with a method to do the bill generation E.g
GenerateBills) that can generate the monthly bill using call detail records (CDR). Assume that the
engine is provided with a list of mobile customers and a list of CDRs that contain all the details of the
calls made by these customers in the given billing month. The engine should generate bills for all the
customers. This bill should include the call charges for each of the calls made by the customer, total
call charges for the month, monthly rental, government tax, discounts (when applicable) and the final
bill amount.

A customer object includes the below details,

• Full name

• Billing address

• Phone number

• Package Code

• Registered date

A CDR includes below details,

• Phone number of the subscriber originating the call (calling party)

• Phone number receiving the call (called party)

• Starting time of the call (date and time)

• Call duration in seconds

Phone numbers are given in the below format: xxx-xxxxxxx where first 3 digits represent the
extension and the last 7 digits represent the unique phone number within that extension.

The billing is based on the package purchased by the customer, call destination (local / long distance)
and call time (peak/ off peak). The rates can be calculated per second or per minute usage.

• Local calls – calls where the originating number and the receiving number both have the same
extension

• Long distance calls – calls where the originating number and the receiving number have
different extensions

• Peak hours – 8:00 am to 8:00 pm (excluding 8:00 pm)

• Off peak hours – 8:00 pm to 8:00 am (excluding 8:00 am)

Note:	International	Direct	Dialing	(IDD)	calls	are	out	of	scope	for	this	version	of	the	invoicing	engine.

The government tax will be 20% of the total bill excluding any discounts and taxes (total call charges
+ monthly rental).

Page | 57

Step 3:

Add the following two packages to the system.

Package Monthly
Rental

Billing Type Call type Per minute charge

Peak Hours Off-peak
hours

Package C 300 Per minute Local calls 2 1

Long distance
calls

3 2

Package D 300 Per second Local calls 3 2

Long distance
calls

5 4

Step 4:

• Change the peak and off-peak hours of Package A as

o Peak hours – 10:00 am to 6:00 pm (excluding 6:00 pm)

o Off peak hours – 6:00 pm to 10:00 am (excluding 10:00 am)

• Change the peak and off-peak hours of Package C as

o Peak hours – 9:00 am to 6:00 pm (excluding 6:00 pm)

o Off peak hours – 6:00 pm to 9:00 am (excluding 9:00 am)

• Make the first minute of all local off-peak calls free of charge for Package B

• Make the first minute of all local calls free of charge for Package C

• Give 40% discount for Package A and Package B if the total call charges for the month
exceeds 1000 LKR

Page | 58

Step 3:

Add the following two packages to the system.

Package Monthly
Rental

Billing Type Call type Per minute charge

Peak Hours Off-peak
hours

Package C 300 Per minute Local calls 2 1

Long distance
calls

3 2

Package D 300 Per second Local calls 3 2

Long distance
calls

5 4

Step 4:

• Change the peak and off-peak hours of Package A as

o Peak hours – 10:00 am to 6:00 pm (excluding 6:00 pm)

o Off peak hours – 6:00 pm to 10:00 am (excluding 10:00 am)

• Change the peak and off-peak hours of Package C as

o Peak hours – 9:00 am to 6:00 pm (excluding 6:00 pm)

o Off peak hours – 6:00 pm to 9:00 am (excluding 9:00 am)

• Make the first minute of all local off-peak calls free of charge for Package B

• Make the first minute of all local calls free of charge for Package C

• Give 40% discount for Package A and Package B if the total call charges for the month
exceeds 1000 LKR

References

[1] ‘Clean Code: A Handbook of Agile Software Craftsmanship’ – By Robert C. Martin

[2] ‘Refactoring: Improving the Design of Existing Code’ – By Martin Fowler

[3] ‘Design Patterns: Elements of Reusable Object-Oriented Software’ – By Erich Gamma, Richard

 Helm, Ralph Johnson, John Vlissides

[4] ‘Object-Oriented Analysis and Design with Applications’ – By Grady Booch

[5] ‘Working Effectively with Legacy Code’ - By Michael C. Feathers

Page | 59

