
Static Code Analysis

Lasitha Dahanayake

What is Static Analysis

• Static analysis, also called static code analysis, is a method of computer program debugging that is
done by examining the code without executing the program.

How Static Analysis can help Software Quality

• There are two ways of inspecting software quality

 Examine the behavior during the run-time (Dynamic analysis)

 Inspect source code / Code reviews (Static analysis)

• Inspecting and analyzing the source code of the program before it is tested,
lower the cost of finding and fixing bugs in software in the early stage of the
development cycle.

Static Analysis Tools

 Developers are human-beings, and everyone make mistakes. So it’s extremely hard to
guarantee things can be done correctly for the first time.

 Employing static code analysis tools is one of the best practices in software
development.

 Some of the Static analysis tools available

 .NET

 CodeIt.Right, FxCop, StyleCop ….

 Java

 PMD, CheckStyle, FindBug ….

 JavaScript

 JSHint, JSLint …

Static Analysis platforms

• Static analysis platforms come with server component

• Static analysis platforms support multiple programming languages and produce
various matrices for analysis. Even maintain historical data.

‒ SonarQube, Moose, Kiuwan are some of the examples

• Selecting the right tool
 There are language specific static analysis tools which are coming as IDE plug-in, so they

are helpful for the purpose of catching issues while coding.

 Static analysis platforms support multiple languages and can handle multiple projects, can
run independently without development environment. Even suitable for organization level
static code analysis, provide various views and dashboards.

SonarQube

• Supports 20+ programming languages.

• More than 40 open-source and commercial plugins.

• Support integration with famous build tool such as Maven, Ant, MSBuild, Jenkins,
Gradle

• Covers the 7 axis of code quality
• Architecture & Design
• Comments
• Coding rules
• Potential Bugs
• Duplication
• Unit Test
• Complexity

SonarQube Server and Runner setup

• Download and install Java JDK if it's not available (Java 8).

• Download SonarCube from https://www.sonarqube.org/downloads/ and unzip to
a desire location.
• Make sure port 9000 is available for listening

• Download SonarCube runner from
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
and unzip to a desire location.

Running SonarCube Server

• Start the SonarCube server using the startup script available in
SONAR_HOME/bin/<Your Platform Folder>/<sonar.sh or StartSonar.bat>.

Access SonarQube Server

• After SonarCube start, access the web interface of the SonarCube at
http://localhost:9000.

https://localhost:9000/

SonarQube Runner (standalone)

• Set the environment variable SONAR_RUNNER_HOME and set the value to the path you
extracted SonarCube runner zip file (e.g C:\sonar-scanner-3.0.1.733-windows).

• Append Sonar runner bin folder to the path environment variable.

• Update Sonar runner setting in SONAR_RUNNER_HOME/conf/sonar-scanner.properties
file (specify correct URL, e.g http://localhost:9000).

• In your project home folder, create a file call 'sonar-project.properties' and enter
following lines as content (change values as you needed).

sonar.projectKey=mysample:project

sonar.projectName=Java Sample project

sonar.projectVersion=1.0

sonar.sources=src\\main\\java

• Run 'sonar-scanner' command from your project home (make sure project has no
compile errors)

View SonarQube analysis results

• Access SonarCube server at http://localhost:9000

View SonarQube analysis results

• Issue details

Conclusion

• Please note that clearing all static analysis issues doesn't mean your
code is in good quality.

• Static analysis tools only catch mistake that has a common pattern.

• So use wisely for your benefit.

Lasitha Dahanayake

Thank You

